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Sudakov region. We also derive an analytic expression for the Borel transform of the pertur-

bative series for the O7 spectrum in the large–β0 limit. Using this example we demonstrate

that exponentiation in moment space is necessary for the calculation of the spectrum for
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the first few spectral moments as a function of a cut Eγ > E0 and estimate the theoretical

uncertainty.
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1. Introduction

Inclusive radiative B decays, B̄ −→ Xsγ, have become an essential ingredient in precision

tests of the Standard Model. The Standard Model b → sγ decay occurs only through

loops (penguin diagrams) involving the W Boson, whose mass is significantly larger than

the available energy, mW À mb. This makes the B̄ −→ Xsγ width a sensitive probe of

any potential flavor–changing short–distance interaction beyond the Standard Model, see

e.g. [1 – 3].

The Standard Model Branching Fraction (BF) is known [4 – 8] since a few years to

next–to–leading order (NLO) in renormalization–group improved perturbation theory. The
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summation of large logarithms of mb/mW is conveniently formulated in the framework of

the effective Weak Hamiltonian, where virtualities of order of the Weak scale are integrated

out to obtain a set of local operators Oi of dimension 6. The result for the inclusive decay

width with a minimal photon–energy cut, Eγ > E0, takes the form:

Γ(B̄ −→ Xsγ,E > E0) =
αemG2

F

32π4
|VtbV ∗

ts|2
(
mMS

b (mb)
)2

m3
b (1.1)

×
∑

i,j, i≤j

Ceff

i (µ)Ceff

j (µ)Gij(E0, µ),

where mb is the quark pole mass, Gij(E0, µ) are matrix elements of operators in the effective

Weak Hamiltonian, Gij(E0, µ) =
∑

Xs

〈
B̄

∣∣O†
i (µ) |Xsγ〉 〈Xsγ|Oj(µ)

∣∣B̄
〉

where Eγ > E0,

and Ceff

i (µ) are the corresponding Wilson coefficients. The matrix elements can be com-

puted in perturbation theory, replacing the B̄ meson by an on-shell b quark and the

hadronic system Xs by a partonic one, owing to the inclusive sum over the final states.

This replacement can be justified using the Operator Product Expansion (OPE) so long as

the photon–energy cut is insignificant. Upon removing the cut, power corrections to the

partonic calculation can be formally shown to be of O(Λ2/m2
b), and they are numerically

small, approximately +2.5% of the total BF [7]. The Standard Model BF, which has been

determined with about ±10% uncertainty [7, 8], is found to be in good agreement with

experimental measurements by CLEO, Belle and BaBar [9 – 14].

The current world average of all experimental data, prepared by the Heavy Flavor

Averaging Group [15], is B(B̄ −→ Xsγ,Eγ > 1.6GeV) = (355±24±10±3)×10−6 , where the

errors are: combined statistical and systematic uncertainty, “shape–function” uncertainty

owing to the extrapolation from the region of measurement Eγ > E0, where E0 ≥ 1.8GeV,

to the reference range of Eγ > 1.6GeV, and uncertainty owing to the b → dγ fraction. The

“shape–function” uncertainty varies significantly between different theoretical approaches.

For example, ref. [16] assigns an error of about ±8% to the extrapolation below E0 =

1.8 GeV, i.e. three times the size of the error quoted here.

One of the essential ingredients for improving the precision of this comparison in the

future is the theoretical calculation of the photon energy spectrum. Owing to irreducible

background, experimental measurements are limited to the range Eγ > 1.8GeV and they

can be significantly improved if the requirement on the range of measurement is relaxed,

for example, to Eγ > 2.0GeV. This, however, requires larger extrapolation that relies on

the theoretical description of the spectrum. Fortunately, this extrapolation presents very

little sensitivity to short–distance physics, in sharp contrast with the total width. On the

other hand, it requires detailed understanding of the QCD dynamics.

The QCD calculation of inclusive decay spectra is essential for other aspects of flavor

physics. An important example is the determination of |Vub| from inclusive charmless

semileptonic decays, B̄ −→ Xulν̄, where the background due to the 50 times more abundant

semileptonic decay into charm restricts the region of measurement to MX < 1.7 GeV. The

dynamics there is similar to the one governing the B̄ −→ Xsγ spectrum to the extent

that spectral measurements of the photon–energy spectrum in B̄ −→ Xsγ are used for the
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determination of |Vub|. In recent years the B̄ −→ Xsγ spectrum has become the prime

testing–grounds for theoretical approaches to inclusive distributions, see e.g. [16 – 29].

The main challenge in computing inclusive decay spectra in QCD is the complex dy-

namics of the threshold region. In this region the decaying b quark is just slightly off its

mass shell, owing to its “primordial” Fermi motion and to soft gluon radiation [30 – 33].

Specifically, the B̄ −→ Xsγ spectrum peaks near the partonic threshold, Eγ −→ mb/2, or

x ≡ 2Eγ/mb −→ 1. This region is characterized by parametrically–large higher–order per-

turbative corrections (Sudakov logs) [33] as well as non-perturbative effects, predominantly

ones related to the Fermi motion of the b quark in the B meson.

It is universally acknowledged that fixed–order perturbative results cannot be directly

used for comparison with spectral data, not even the first few moments of the photon

energy with experimentally–relevant cuts, such as Eγ > 1.8 GeV. Fixed–order results for

the B̄ −→ Xsγ spectrum are characterized by

• Sudakov logarithms, namely singular real-emission corrections to the differential spec-

trum dΓ(x)/dx, of the form lnk(1−x)/(1−x) with k ≤ 2n−1 at order αs
n, owing to

multiple soft and collinear radiation. The perturbative spectrum is nevertheless inte-

grable as there are also infrared–singular virtual corrections proportional to δ(1− x)

— the spectral moments,

ΓPT

N ≡
∫ 1

0
dx

1

ΓPT
total

dΓPT(x)

dx
xN−1 (1.2)

are infrared safe.

• Support for Eγ < mb/2, where mb is the quark pole mass, setting the upper limit of

integration in eq. (1.2) as x = 1. The perturbative support at any order is different

from the physical one, Eγ < MB/2, where MB is the meson mass. Importantly, the

pole mass itself has a linear infrared renormalon ambiguity [34 – 36], mb → mb±O(Λ),

and therefore it cannot be assigned a precise value without specifying an additional

regularization prescription. In a fixed–order framework one computes the pole mass

order-by-order from a given short–distance mass, such as mMS

b , but the result strongly

depends on the order, as the series is badly divergent. The use of alternative mass

schemes [26, 27, 37, 38] amounts to introducing an infrared cutoff, which hinders the

possibility of using of the inherent infrared safety of the on-shell decay spectrum.

• Large running–coupling effects, which completely dominate the NNLO correction to

the spectrum [39] if the coupling at NLO is renormalized at mb. Large running–

coupling effects reflect the fact that the typical gluon virtuality is much smaller than

mb. Naturally, large running–coupling corrections appear also at higher orders. Real-

emission corrections proportional to CF βn−1
0 αs

n, where β0 (2.16) is the leading coef-

ficient of the beta function, were computed in [18] to all orders1. In section 2.3 below

we will show that the series composed of these terms alone (i.e. with no exponentia-

tion, no effect of real–virtual cancellation) cannot be considered a viable prediction

1Another calculation of these corrections is reported in ref. [29]. There, an infrared cutoff was applied.
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Figure 1: Comparison between the differential spectra for B̄ −→ Xsγ decay (through O7 only)

obtained by DGE, matched to NLO or NNLO, with fixed–order results in Eγ space (x space). All

curves correspond to the same value of the b-quark mass, the PV pole mass mb = 4.89GeV. The

end of partonic phase space, Eγ = mb/2, is denoted by an arrow.

for the spectrum anywhere in the peak region. This series is Borel summable up to

Eγ ∼ 2GeV, but ceases to be so above this scale, where the Borel integral diverges

for u −→ ∞.

The numerical results for the spectrum obtained by fixed–order calculations at NLO and

NNLO, as well as running–coupling corrections beyond this order, are shown in figure 1,

with the pole mass is set2 to mb = 4.89 GeV. The lack of convergence in the peak region is

apparent.

These characteristics of the fixed–order result point towards the necessity for (1) resum-

mation of all large perturbative corrections (2) systematic separation between perturbative

and non-perturbative contributions and appropriate parametrization of the latter. Dressed

Gluon Exponentiation (DGE) offers a framework to do so, utilizing directly the on-shell

scheme [18, 40, 17]. Owing to its inherent infrared safety, the on-shell decay spectrum it-

self provides then a first approximation to the physical B–meson decay spectrum. Figure 1

shows these results as well. Other approaches to compute the spectrum [29, 16, 27] have

been based on introducing an infrared cutoff as means of separation between perturbative

2The pole–mass value mb = 4.89 GeV is obtained by Principal Value Borel summation starting from

mMS
b = 4.20 GeV, as explained in [17].
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and non-perturbative corrections. With a cutoff in place, a first approximation to the

B–meson decay spectrum is obtained only upon convoluting the perturbative result with

a leading–power non-perturbative quark distribution function, or “shape function” [30 –

33, 25 – 27, 37, 38]. Ref. [17] has shown that a cutoff and a leading–power “shape func-

tion” can be avoided, and replaced by a resummation of the perturbative expansion, a

prescription for the renormalon singularities (Principal Value of the Borel sum) and power

corrections. This involves of course making certain assumptions on the perturbative expan-

sion and on non-perurbative corrections. Aside from the separation issue, the calculation in

ref. [17] applies a novel approach to resummation per se. Different higher–order corrections

are considered important in different approaches:

• Refs. [16, 27] emphasize the significance of Sudakov logarithms and utilize a logarith-

mic accuracy criterion and an infrared cuoff.

• Ref. [29] emphasizes the significance of running–coupling corrections (dismissing Su-

dakov logarithms) and utilizes large–β0 resummation with a Wilsonian cutoff.

• Ref. [17] resums Sudakov logarithms as well as running–coupling corrections in the

Sudakov exponent and utilizes additional information on the Borel transform of the

exponent to complement the logarithmic accuracy criterion.

Upon resumming the perturbative expansion for the matrix elements Gij as a function

of the cut E0, normalized by Gij(Emin), eq. (1.1) can be written as:

Γ(B̄ −→ Xsγ,E > E0) =
αemG2

F

32π4
|VtbV ∗

ts|2
(
mMS

b (mb)
)2

m3
b (1.3)

×
∑

i,j, i≤j

Ceff

i (µ)Ceff

j (µ)Gij(Emin, µ)

[
Gij(E0)

Gij(Emin)

]

Resummed

,

where it is assumed that Emin ¿ mb/2 so Gij(Emin, µ) can be computed using fixed–order

perturbation theory (our choice will be Emin = mb/20) while E0 can take any value, in

particular, experimentally–relevant one: E0 ≥ 1.8 GeV.

The essential element in the calculation of resummed spectra near threshold, namely

[Gij(E0)/Gij(Emin)]Resummed in eq. (1.3), is the Sudakov factor, which sums up the domi-

nant corrections owing to multiple soft gluon emission that exponentiate in moment space.

In DGE the Sudakov exponent is computed as Borel sum, combining Sudakov resummation

with the resummation of running–coupling effects. This immediately exposes the power–

like infrared sensitivity of the on-shell matrix elements in the form of renormalons. This

allows for

• Explicit cancellation of the leading renormalon ambiguity, the one associated with

the definition of the pole mass.

• Definite regularization of all renormalons, using the Principal Value prescription.

This definition of the perturbative sum amounts to a systematic separation between per-

turbative and non-perturbative corrections. This procedure uniquely defines the non-

perturbative Fermi motion effect, distinguishing it from the radiation effect that is common
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to an on-shell heavy quark and to one that is part of a meson. As already mentioned,

in contrast with other formulations, no infrared cutoff is needed here. Therefore, Fermi

motion effects enter exclusively through power corrections. These power corrections are

power–enhanced at large N : they scale as powers of NΛ/mb, so they can modify the per-

turbative on-shell spectrum by O(1) corrections near threshold while almost not affecting

the first few moments and the distribution away from threshold. According to the renor-

malon structure of the exponent, non-perturbative corrections start at the third power of

NΛ/mb, making just a small correction to the spectrum. The numerical significance of

these power corrections will be analyzed in section 4 below.

As shown in figure 1 the DGE spectrum is qualitatively different from the fixed–order

results. It is characterized by

• Approximate physical support: the spectrum smoothly extends beyond the perturba-

tive endpoint, Eγ = mb/2, and tends to zero close to the physical one, Eγ = MB/2.

• Mass–scheme independence, owing to the explicit cancellation of the pole–mass reror-

malon ambiguity.

• Stability in going from order to order, reflecting the fact that the dominant higher–

order corrections are indeed resummed.

The DGE B̄ −→ Xsγ spectrum, and its first few moments with experimentally relevant

cuts, were computed in ref. [17]. Later, when experimental data for the average energy the

variance appeared [14, 12, 13], these predictions where found to be in good agreement [41,

19].

Recently there has been significant progress in higher–order calculations. The NNLO

corrections to the spectrum associated with the matrix element G77(E0) of the magnetic

dipole operator

O7 ≡ e

32π2
mMS Fµν s̄ σµν(1 + γ5) b (1.4)

have been computed in full [39, 42]. The resummed spectrum of ref. [17] already included

NNLL corrections through the Sudakov factor [17, 43]; however, it included non-logarithmic

corrections to NLO only. One of the tasks of the present paper is to match the resummed

spectrum to full NNLO accuracy in the O7 sector. We also consider other operators in

the Weak Hamiltonian, which have been so far computed to O(αs) only. Knowing that

independently of the nature of the short–distance interaction, all important contributions

in the peak region necessarily involve the same Sudakov factor, we compute resummed

spectra for individual matrix elements Gij(E0), determining the hard coefficient functions

at O(αs) from known results.

In addition, significant progress towards NNLO calculation of the total BF was re-

cently made [44, 45]: two–loop matrix element of the O7 operator have been computed

in full. This adds to the already existing NNLO results in the framework of the effective

Weak Hamiltonian, which includes the matching coefficients at the Weak scale [46], partial

information on the evolution matrix [47, 48], as well as β0αs
2 contributions to B̄ −→ Xsγ

– 6 –



J
H
E
P
0
1
(
2
0
0
7
)
0
2
9

of several matrix elements [49]. It is our aim here to set a framework where the state-of-the-

art calculation of the spectrum can be used together with that of the total BF. This would

be particularly important once the NNLO calculation is complete. A detailed knowledge

of the partial BF as a function of the photon–energy cut Eγ > E0 can help making good

use of the data, since low cuts, such as E0 = 1.8 GeV, are characterized by large systematic

experimental errors, in contrast with higher cuts, such as E0 = 2.0 GeV, that, in turn,

requires larger extrapolation.

An important new ingredient in the calculation of the spectrum that we develop in this

paper is the use of the analytic structure of the perturbative result in moment space when

writing the resummation formula. It is a general problem in the application of Sudakov

resummation, that the region of interest may extend far beyond the asymptotic Sudakov

regime where the logs are large and the coupling is small. An immediate implication is that

the resummed result depends on the (often implicit) assumptions made concerning non-

logarithmic O(1/N) higher–order corrections. Non-logarithmic corrections are of course

included to some fixed order in αs in the process of matching the resummed spectrum into

the fixed–order expansion. This procedure, however, may not be sufficient to avoid bias

of the result due to the resummation of logarithms in the region where the logarithms are

not at all dominant.

The B̄ −→ Xsγ spectrum provides an important motivation to address this problem,

since the region where the logarithms alone dominate is rather small, at least up to the

NNLO level [39]. To make good use of perturbation theory it is therefore important to

impose additional constrains on the resummation formula. Such constraints are indeed

available: the analytic structure of the perturbative result (at any order) in moment space

is known fairly well: perturbative coefficients are composed of harmonic sums and rational

functions whose singularities appear on the negative real axis in N space. The rightmost

singularity appears at N = −J where J , a non-negative integer, corresponds to the power

fall of the spectrum, dΓ/dx ∼ xJ , in the x → 0 limit. In B̄ −→ Xsγ, for most matrix

elements, J = 3. Thus, there is quite a strong suppression of the spectrum at small x,

which obviously would not be respected by a generic large–x resummation formula that

accounts only for lnl(1 − x)/(1 − x) terms. A power fall is generally expected when the

x → 0 behavior is dominated3 by phase space.

The remainder of this paper is organized as follows: section 2 is devoted entirely to

the normalized spectrum of the G77 matrix element, corresponding to the magnetic dipole

operator, O7. G77 is the only matrix element contributing at O(1), while other Gij start at

O(αs). Moreover, G77 is the only matrix element for which the full O(αs
2) (NNLO) result

is available [39, 42, 44, 45]. This facilitates matching of the resummed spectrum to NNLO

as well as performing an in-depth analysis of the perturbative expansion. In section 2.1 we

briefly summarize the main assumptions and the necessary formulae in the application of

DGE to the radiative B decay spectrum. In section 2.2 we reformulate the resummation

formulae under constraints on the analytic structure in moment space, in order to have a

3It does not apply when this limit is characterized by singular matrix elements, as is the case of the

chromomagnetic operator contribution to B̄ −→ Xsγ.
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good description of the small Eγ tail. Next, in section 2.3 we analyze the all–order result in

the large–β0 limit. section 3 is devoted to computing the resummed spectra for the matrix

elements Gij other than G77. In section 4 we compute the total BF and incorporate the

resummed spectra of sections 2 and 3 into eq. (1.3), to obtain the BF as a function of E0.

We also study there numerically the relation between renormalons, power correction and

support properties. Finally, we present predictions for the first few moments as a function

of the cut and analyze the theoretical uncertainty. In section 5 we shortly summarize our

conclusions.

2. Resummed spectrum for the magnetic dipole operator O7

2.1 Dressed Gluon Exponentiation

DGE is a general resummation formalism for inclusive distributions that is designed to

address kinematic threshold problems in QCD where there is interplay between Sudakov

logarithms, running–coupling effects and parametrically–enhanced power corrections. The

formalism will not be described here in any detail; we refer the reader to a recent review [40].

Here we concentrate on the application to B̄ −→ Xsγ [17], briefly summarizing the main

assumptions and the necessary formulae.

For simplicity we consider in this section the normalized spectrum associated with the

magnetic dipole operator only, postponing the calculation of the spectra of other matrix

elements to section 3, and the calculation of the overall normalization of the BF to section 4,

where the contributions of the different matrix elements are combined with the appropriate

Wilson coefficients.

Formulating Sudakov resummation in moment space

The normalized differential spectrum associated with the magnetic dipole operator takes

the form

1

ΓO7

dΓO7
(x)

dx
= V (αs(mb)) δ(1 − x) + R (αs(mb), x) ,

V (αs(mb)) = 1 + CF

∞∑

n=1

kn

(
αs(mb)

π

)n

R (αs(mb), x) = Rsing. (αs(mb), x) + Rreg. (αs(mb), x)

Rsing. (αs(mb), x) = CF

∞∑

n=1

[
rsing.

n (x)
]
+

(
αs(mb)

π

)n

Rreg. (αs(mb), x) = CF

∞∑

n=1

rreg.

n (x)

(
αs(mb)

π

)n

(2.1)

where Rsing. contains only plus distributions of the form
[
lnl(1 − x)/(1 − x)

]
+

where at

order αs
n, 0 ≤ l ≤ 2n − 1, while Rreg. is integrable for x → 1. The constants kn are deter-

mined such that the integral of the normalized spectrum would be exactly unity:

kn ≡ −
∫ 1

0
dx rreg.

n (x), (2.2)
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at every order in the perturbative expansion.

The partially–integrated matrix element defined with a Eγ > E0 cut, normalized by

the fully–integrated one, is

G77(E0,mb)

G77(0,mb)
=

∫ 1

x=2E0/mb

dx
1

ΓO7

dΓO7
(x)

dx
. (2.3)

Defining the spectral moments of eq. (2.1) as in eq. (1.2) one may resum the perturbative

expansion corresponding to eq. (2.3) as follows:

[
G77(E0,mb)

G77(0,mb)

]

Resummed

=
1

2πi

∫ c+i∞

c−i∞

dN

N − 1

(
2E0

mb

)1−N

H (αs(mb), N) × Sud(N,mb)

+

∫ 1

x=2E0/mb

dx∆R(αs(mb), x), (2.4)

where the first line, written as an inverse–Mellin transform4, is the dominant contribution,

which contains in particular the contributions originating in V in eq. (2.1) as well as all

the log–enhanced contributions to the matrix element, Rsing. in eq. (2.1), while the second

line contains some residual real–emission terms that are integrable for x → 1.

The Sudakov factor

The Sudakov factor, Sud(N,mb), sums up the logarithmically–enhanced corrections origi-

nating Rsing. to all orders. These corrections exponentiate:

Sud(N,mb) = exp

{
CF

[
E1(N)

αs(mb)

π
+ E2(N)

(
αs(mb)

π

)2

+ · · ·
]}

. (2.5)

In DGE the exponent is written as a Borel sum:

Sud(N,mb) = exp

{
CF

β0

∫ ∞

0

du

u
T (u)

(
Λ2

m2
b

)u [
BS(u)Γ(−2u)

(
Γ(N)

Γ(N − 2u)
− 1

Γ(1 − 2u)

)

− BJ (u)Γ(−u)

(
Γ(N)

Γ(N − u)
− 1

Γ(1 − u)

)]}
, (2.6)

where β0 is defined in (2.16) below. BS(u) and BJ (u) are the Borel transforms

S(αs(µ)) =
CF

β0

∫ ∞

0
duT (u)

(
Λ2

µ2

)u

BS(u)

J (αs(µ)) =
CF

β0

∫ ∞

0
duT (u)

(
Λ2

µ2

)u

BJ (u) (2.7)

of the Sudakov anomalous dimensions of the quark distribution function [43] and the jet

function [50], respectively, and T (u) is the Laplace conjugate of the ’t Hooft coupling [51]:

A(µ) =
β0αs

’t Hooft(µ)

π
=

∫ ∞

0
du T (u)

(
Λ2

µ2

)u

;
dA

d ln µ2
= −A2(1 + δA),

4The contour running parallel to the imaginary axis is assumed to be to the right of all the singularities

of the integrand.
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T (u) =
(uδ)uδe−uδ

Γ(1 + uδ)
; ln(µ2/Λ2) =

1

A
− δ ln

(
1 +

1

δA

)
(2.8)

with δ ≡ β1/β
2
0 .

Let us point out that the particular N–dependence in (2.6) is based on the Mellin

transform of the plus distributions of the log–enhanced terms,
[
lnl(1 − x)/(1 − x)

]
+
, mak-

ing no further approximation. Eq. (2.17) in ref. [17] is based on an approximation to this

result, a minimal scheme where only ln N terms are exponentiated; it differs from (2.6)

above by O(1/N) terms. As discussed in section 3.4 in [52], eq. (2.6) goes beyond this min-

imal scheme in exponentiating a particular class of O(1/N) terms. In the present paper we

will take one further step in this direction (see section 2.2 below) and modify the exponent

to conform with the analytic structure of the full perturbative result in moment space. The

Sudakov factor then takes the form (2.14). It should be clear that these modification do

not affect the large–N behavior, and their influence on the distribution in the peak region

is small.

The calculation of the exponent proceeds as in refs. [52, 17]. Formally, eq. (2.6) (or

eq. (2.14) below) is computed with NNLL accuracy, using the known [43, 53, 17, 39, 54,

55] O(αs
3) expansions of S(αs(µ)) and J (αs(µ))5. However, since the Borel integral is

evaluated, not expanded(!), large subleading corrections, notably running–coupling effects

are accounted for to all orders [56 – 59, 52, 17]. Importantly, the Borel integrand presents

singularities at integer and half integer values of u. These induce ambiguities that scale

as integer powers of NΛ/mb and NΛ2/m2
b that are inherent to the perturbative quark

distribution and the jet, respectively. In DGE the perturbative exponent is defined as the

Principal Value of the integral in eq. (2.6), while non-perturbative corrections are assumed

to follow the ambiguity structure of the exponent.

The details of the spectrum are dictated by the two functions: BS(u) and BJ (u) in

eq. (2.6). In this paper we adopt the approximations to these two functions that were

developed and used in previous papers, namely eq. (3.27) in ref. [52] (or eq. (2.35) in

ref. [17]). These approximations are based on the known NNLO expansions of the anoma-

lous dimensions and on additional constraints on the behavior of these functions away from

the origin. These are particularly important in the case of the quark distribution function

BS(u), since NΛ/mb is not necessarily small; the contribution of BJ (u) away from u = 0

has a rather significant suppression, since NΛ2/m2
b ¿ 1 at any relevant N . The additional

constraints can be briefly summarized as follows [52, 17] (see also the recent review [40]):

• Properties of the large–β0 results [18] that are expected to hold in the full theory: the

Sudakov anomalous dimensions in eq. (2.7) have no Borel singularities. Moreover,

their Borel transform vanishes at certain integer values of u, eliminating some poten-

tial renormalon singularities in the exponent of eq. (2.6). Specifically in the quark

distribution function there is one zero at u = 1: BS(u = 1) = 0, so O(N2Λ2/m2
b) am-

biguities are absent while higher6 power ambiguities are present. This suggests that

5The two-loop results for the Sudakov anomalous dimensions have recently been checked by additional,

independent calculations [20, 21].
6The O(NΛ/mb) ambiguity cancels against that of the pole mass [18, 17].
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the width of the spectrum is “protected” from non-perturbative power corrections,

while higher moments receive such corrections.

• The computed value of BS(u = 1/2), corresponding to the large–order asymptotic

behavior of the Sudakov exponent (which is different from its large–β0 limit). This

calculation (see section 2.3 and appendix B in ref. [17]) is based on the known cancel-

lation mechanism [18] of the leading, O(NΛ/mb), renormalon ambiguity in the expo-

nent with that of the pole mass, the known structure of this Borel singularity [60, 17]

and the perturbative expansion of the ratio between the pole mass and mMS

b .

It was further observed in refs. [17, 52] that given the constraints described above — in

particular, the expansion of BS(u) near the origin and its values at u = 1/2 and at u = 1 —

and so long as BS(u) does not get large at intermediate values of u (specifically for u ∼ 3/2)

the support properties of the resummed spectrum are close to these of physical spectrum.

In this scenario power corrections are expected to be small. When making predictions we

shall not assume that this is necessarily the case, but instead allow for variation of BS(u)

and for power corrections as explained below.

Renormalons and power corrections in the exponent

We base our analysis on the parametrization of BS(u) in ref. [52] (see eqs. (3.27) to (3.29)

there), where

BS(u = 3/2) = −0.23366C3/2 . (2.9)

C3/2 = 1 is the default value used in refs. [17, 52], and variation of C3/2 between 0.1 and 10

is considered. Here, however, we take one step further in the way power corrections are

taken into account. Introducing power corrections based on the renormalon ambiguities in

the quark–distribution part of the Sudakov factor (2.14) we have [52]:

S̃ud
(J)

(N,mb)

∣∣∣∣
PV

−→ S̃ud
(J)

(N,mb)

∣∣∣∣
PV

× exp

{
∞∑

k=3

εPV

k

(
Λ

mb

)k

R(J)(N, k/2)

}
, (2.10)

where the N–dependence of each renormalon residue is carried by

R(J)(N, k/2) ≡ Res Γ(−2u)

(
Γ(N + J)

Γ(N + J − 2u)
− Γ(J + 1)

Γ(J + 1 − 2u)

)∣∣∣∣
u=k/2

, (2.11)

and where we defined

εPV

k ≡ CF

β0
π fPV

k

T (k/2)

k/2
BS(k/2), (2.12)

where fPV

k are dimensionless non-perturbative parameters. Assuming that the power cor-

rections are of order of the ambiguity itself, eq. (2.12) with fPV

k ≈ 1 provides an estimate

of their magnitude. This assumption will be eventually tested by data.

The application of (2.10) is limited in practice for several reasons: (1) going to large

Eγ an increasing number of power terms become relevant. It is not clear a priori how

many would be needed in a given situation; (2) BS(k/2) with k ≥ 3 is not known beyond

the large–β0 limit, and this limit most likely provides an overestimate. If one varies C3/2
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in (2.9) over a large range, also the magnitude of the power correction εPV

3 in eq. (2.12)

varies a lot if fPV

3 is kept at its natural size, fPV

3 ≈ 1.

Fortunately, there is another selection criterion that can be used to determine the

allowed range in the parametrization of BS(u) as well as in the size of the power correc-

tions εk: the support properties. In the calculation itself the heavy–meson mass is not used.

However, since it sets the physical support, it can be used to distinguish acceptable spectra

from non-acceptable ones. In section 4.3 we perform a numerical analysis examining the

parameter space of C3/2 and fPV under constrains on the support of the corresponding

spectra, see eq. (4.12) and figure 9 there.

Matching the resummed spectrum to fixed order

Given the Sudakov factor, one can determine the hard coefficient function H (αs(mb), N)

as well as the residual terms ∆R(αs(mb), x) in eq. (2.4) order-by-order in perturbation

theory from the expansion of the differential spectrum in eq. (2.1). It should be noted

that as far as the terms that are regular for x → 1 are concerned, the separation between

the contributions that are taken into account in moment space and the residual terms

that are included directly in x space is arbitrary. Moreover, the matching between the

resummed exponent and the fixed–order expansion can be done in a variety of ways that

differ by subleading corrections. In appendix A we derive explicit expressions to O(αs
2)

for H (αs(mb), N) and ∆R(αs(mb), x) based on the available NNLO results of ref. [39, 42].

In doing so we rely on previous experience in the applications of Sudakov resummation to

inclusive distributions in QCD, e.g. [56, 57, 59, 17, 52], in the following ways:

• we give preference to moment space, so ∆R(αs(mb), x) reduces to small corrections

that vanish at x → 1. This guarantees, in particular, smooth transition from the

perturbative region x ≤ 1 to the one above x = 1.

• in moment space we use “log-R” matching [61], where the perturbative expansion of

the logarithm of the spectral moments is constructed as a sum of the perturbative

expansions of ln Sud(N,mb) and of ln H (αs(mb), N). Consequently H (αs(mb), N)

itself is constructed as an exponential function.

Following these considerations we arrive at the NNLO matching formula of eq. (A.28).

2.2 Analytic structure in moment space and the small–Eγ asymptotics

In general, Sudakov resummation is a parametrically–controlled approximation in a specific

kinematic region where the logarithms are large and the coupling is small. The logarithmic–

accuracy criterion applies only if the product of the coupling times the logarithm is small

enough. The application to b decay, where the coupling at the hard scale is αs(mb) '
0.2, is a borderline case at the outset: near threshold, where the logarithms are really

large, the logarithmic–accuracy criterion does not hold and non-perturbative corrections

become important, while away from threshold the logarithms are no more the dominant

perturbative corrections.
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As discussed above, DGE is designed to deal with the first problem, extending the

applicability of the resummation deeper into the threshold region, x ' 1. In this section

we would like to address the second, namely the application of the resummed spectrum in

the region where the logarithms are not necessarily dominant. Usually, Sudakov–resummed

spectra suffer from artifacts when evaluated away from the Sudakov region. We will show

that by imposing constraints on the analytic structure of the Sudakov factor in moment

space, one can extend the applicability of the resummed spectrum away from the Sudakov

region, and even use it for x ¿ 1, where in the absence of such constraints artifacts from

the resummed lnk(1 − x)/(1 − x) terms are significant.

Much like the problem, the solution we suggest is general. We nevertheless consider

here the concrete case of the photon–energy spectrum in b → sγ. As we shall see, it

provides a particularly good example because of the strong suppression of the differential

spectrum at small x, which makes potential resummation–artifacts more pronounced.

As was observed by Melnikov and Mitov [39], at small x, the differential b → sγ

spectrum dΓO7
/dx falls as x3:

1

ΓO7

dΓO7

dx
' x3 ×

(
CF αs

2π
+ · · ·

)
+ O(x4). (2.13)

This is a general property that holds to all orders in the perturbative expansion. In

particular, the known two–loop results [39, 42] as well as all-order results in the large–β0

limit [18] — see appendix B.3 below — all share this cubic suppression. This suppression is

partially owing to the fact that the available phase space shrinks as EγdEγ for Eγ → 0, and

partially a consequence of the dynamics: the coupling of the photon to the flavor–changing

current in (1.4) involves Fµν = ∂µAν − ∂νAµ, which translates into a power of the photon

momentum compared to the usual Aµ coupling. In the squared matrix element this results

in two powers of Eγ on top of the phase space suppression, namely dΓO7
∼ E3

γdEγ .

It is obvious that any resummation procedure that considers only the terms that are

singular at x → 1, namely, αs
n lnk(1 − x)/(1 − x), is bound to generate artifacts in the

region where these terms no longer dominate. The largest artifacts are associated with

the most subleading logarithms, 1/(1 − x), which behave as a constant for x → 0. Such

resummation artifacts are limited in size by virtue of matching the resummed Sudakov

factor to the fixed–order expansion. However, matching to a fixed order may not always be

sufficient to guarantee a good approximation away from the Sudakov region, especially in

cases where the coupling is large, so subleading perturbative corrections are not negligible.

The strong suppression of the differential spectrum in eq. (2.13) makes such artifacts

particularly important: if only αs
n lnk(1 − x)/(1 − x) terms are resummed, resummation

artifacts that behave as a constant at small x are expected to appear at any order. NNLO

matching guarantees that such terms only appear at O(αs
3) and beyond. Nevertheless, at

sufficiently small x these can easily compete with the terms in eq. (2.13), and eventually

dominate. Consequently, the resummed spectrum would develop a (small, O(αs
3)) constant

x → 0 tail instead of the correct cubic fall-off. Obviously, this should be avoided. In the

following we develop a formalism where such artifacts are systematically avoided to any

order by imposing the correct analytic structure on the moment space Sudakov factor.
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Figure 2: Comparison between the differential spectra for B̄ −→ Xsγ decay (through O7 only)

obtained by DGE using the exponent (2.14), matched to NNLO according to (A.43) with J = 0

through 4 (and µ = mb), and results obtained in x space with NNLO using Borel summation of

running–coupling effects in the SDG approximation according to eq. (2.23). In the plot on the

left the horizontal axis ends at the physical endpoint Eγ = MB/2 while the partonic endpoint is

denoted by an arrow. The plot on the right hand side enlarges the tail of the distribution; it ends

at the partonic end of phase space.

The basic observation underlying our method is that there is a direct correspondence

between the small–x asymptotic behavior and the analytic structure in moment space

(where moments are defined according to eq. (1.2)): a pole at N = −J corresponds to a

small–x fall-off of the form: dΓ/dx ∼ xJ .

Motivated by eq. (2.13), we assume the asymptotic behavior dΓ/dx ∼ xJ (in our case

J = 3) and construct the Sudakov–resummed spectrum to accommodate this behavior. In

order to capture the xJ suppression at x → 0 at the level of the Sudakov exponent we

modify eq. (2.6) into:

S̃ud
(J)

(N,mb) = exp

{
CF

β0

∫ ∞

0

du

u
T (u)

(
Λ2

m2
b

)u [
BS(u)Γ(−2u)× (2.14)

(
Γ(N + J)

Γ(N + J − 2u)
− Γ(J + 1)

Γ(J + 1 − 2u)

)
− BJ (u)Γ(−u)

(
Γ(N + J)

Γ(N + J − u)
− Γ(J + 1)

Γ(J + 1 − u)

)]}
.

This guarantees that no poles are generated for N > −J and therefore already before any

matching is done the Sudakov factor would not give rise to a tail that falls slower than xJ .

In appendix A.3 we develop the matching procedure of eq. (2.14) with the NNLO

results, in analogy with what was done in appendices A.1 and A.2 for the J = 0 case.

Similarly to eq. (2.14), the matching coefficients are constructed under a constraint on

the analytic structure in moment space: no poles should appear for N > −J , and so the

small–x asymptotic behavior would coincide with that of the fixed–order result, dΓ/dx ∼
xJ . The final matching formula, for a general J , appears in eq. (A.43). Note that while

both the exponent (2.14) and the matching coefficients entering (A.43) vary with J , the
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Figure 3: The partial BF ratio, BF(Eγ > E0)/BF(Eγ > 0), corresponding to magnetic dipole

operator, as a function of the cut E0, computed by DGE (2.14) with J = 3, matched to NLO

(dashed) and NNLO (full line) according to eq. (A.43). In both cases the renormalization scale in

the matching coefficient is µ = mb. The shaded area represents the uncertainty band at NNLO

while the two external dashed lines represent the NLO one. The lower NLO uncertainty band trails

the central line for the NNLO matching prediction for E0 . 2.15GeV. The width of the uncertainty

band is reduced roughly by a factor of two by including the NNLO corrections. The calculation of

the theoretical errors is explained in section 4.2 below.

NNLO expansion does not; only higher orders do. Moreover, the log–enhanced terms are

J independent, only O(1/N) terms depend on J .

The effect of varying J is shown in figure 2. As expected, variations in the peak region

as a function of J are small, while variations in the tail are rather significant. In particular,

as shown in the plot on the right, the J = 0 curve approaches a constant at small x, the

J = 1 one falls as x1, etc. These are artifacts of the resummation. Such artifacts are

absent for J = 3 (or larger) where the power fall-off is determined by the perturbative

expansion itself, eq. (2.13). Obviously, the natural choice in our case is J = 3: singularities

at N = −3 do appear in the perturbative expansion, so they should be allowed in the

resummed spectrum. We will use the J = 3 spectrum as the default choice below.

Having set the final resummation and matching formulae, let us examine the prediction

for the partial BF as a function of the cut. The result is shown in figure 3. The figure

compares the results obtained at NLO and at NNLO. Note that the Sudakov factor, which

is computed as a Principal Value Borel sum, is the same (formally it has NNLL accuracy)

— only the matching coefficient (A.43) is truncated at different orders. The error is sig-
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Figure 4: Convergence of the perturbative expansion in eq. (2.19), generated by running–coupling

effects only, for the O7 decay spectrum: partial sums of order O(αs
n) with n = 1 through 4 are

shown together with the Borel sum of eq. (2.15). Left: the whole range of energies on a logarithmic

vertical axis. Right: a restricted range on a linear scale. In both plots the horizontal axis ends at

Eγ = mb/2, as dictated by the support of these functions. The δ(Eγ − mb/2) is not shown. In the

plot on the right hand side the additional full lines at NNLO and beyond include the full O(αs
2)

corrections based on the calculation of ref. [39], see eq. (2.22) and (2.23) below.

nificantly reduced at small E0 cuts, where the corrections in the matching coefficient are

essential.

2.3 All–order results in the large–β0 limit

Running–coupling effects often constitute a major part of the radiative corrections in

QCD [62 – 64]. The typical situation is that the average gluon virtuality is lower, some-

times quite significantly lower, than the hard scale in the process, m. Thus, when the

latter is used as the default renormalization scale for coupling (µ = m), one encounters

large corrections involving powers of (β0αs(m)/π), to any order in perturbation theory. In

simple cases perturbative predictions can therefore be significantly improved by using the

BLM scale instead. Differential spectra involve other parametrically–large corrections, such

as Sudakov logarithms. Since they inherently depend on several scales, a straightforward

scale–setting procedure is excluded. In such cases resummation is necessary.

In case of the b → Xsγ spectrum O(CF β0αs
2) running–coupling (BLM) corrections

have been computed long ago [65]. When using µ = mb, these corrections are very sig-

nificant. A couple of years ago running–coupling terms in the G77 spectrum, CF βn−1
0 αs

n,

were computed to all orders [18, 29]. Recently, the full O(αs
2) calculation of G77 was per-

formed [39, 42], finding that the additional, non-BLM corrections are, instead, moderate.

figures 4 and 1 present these results for the normalized differential b → Xsγ spectrum.

The plots clearly show that the CF βn−1
0 αs

n corrections are very large. In particular, if

the expansion is performed in terms of αs(mb), the O(CF β0αs
2) term completely dominate

the O(αs
2) correction. This is true even at fairly large Eγ , despite the presence of formally
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leading Sudakov logarithms with other color factors. With this numerical evidence it is easy

to reach the conclusion that Sudakov resummation is not needed, or cannot significantly

improve the description of the spectrum (see e.g. the discussion in ref. [29]). The purpose

of this section is to demonstrate that this conclusion is wrong, and that multiple soft and

collinear gluon emission does in fact play an important rôle in shaping the spectrum through

higher–order corrections. To this end we compare the fixed–order results with (1) DGE,

where Sudakov logarithms are taken into account through exponentiation in moment space;

and (2) the single–dressed–gluon (SDG) approximation, which accounts for real–emission

running–coupling CF βn−1
0 αs

n corrections, to all orders, but neglects Sudakov logarithms.

We will show that while the SDG series is Borel–summable for Eγ <∼ 2 GeV, it does not

provide a viable description of the spectrum anywhere in the peak region, in sharp contrast

with the DGE result.

The single–dressed–gluon approximation

The all–order calculation of the G77 decay spectrum in the large–β0 limit was performed

in ref. [18]. Using the scheme–invariant Borel transform with Λ defined in the MS scheme

the result takes the form:

1

ΓO7

dΓO7

dx
= δ(1 − x) +

[
CF

2β0

∫ ∞

0
duT (u)

(
Λ2

m2
b

)u

B(x, u)

]

+

(2.15)

with mb the bottom pole mass,

β0 =
11

12
Nc −

1

6
Nf (2.16)

and

B(x, u) ≡ e
5
3
u sinπu

πu
x3 (1 − x)−u

∫ 1

0
dα α (1 − α)−u × (2.17)

[
1

(1 − xα)2

(
1 − 4α + α2 − (1 − α)2

1 − u

)
+

1 − α

(1 − xα)(1 − u)
+

2

1 − x

1

1 − xα
+

1

1 − x

]

= e
5
3
u sinπu

πu
x3 (1 − x)−u

{
1

1 − x

1

(1 − u)(2 − u)
+

[
−(1 − 4x + x2)

x3

(
1

1 − x
+

1

1 − u

)
+

2(1 − x)2

(1 − u)2x3

]
2F1

(
[1, 1], [2 − u], x

)

+
(1 − 4x + x2)

x3

1

1 − x
+

(x + 1)(x2 − 3x + 1)

(1 − u)x3(1 − x)
− (2 − x)

(2 − u)x2
− 2(1 − x)

(1 − u)2x3

}
.

In ref. [18] the Borel function was expressed as an integral over a single Feynman parameter

(the first expression above). Here we performed this integral and wrote the Borel function

in terms of a hypergeometric function.

Strictly within the large–β0 limit T (u) = 1. It is straightforward to take into account

running–coupling effects beyond this level by an appropriate choice of the function T (u) in
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the Borel integral7. To account for β1 terms to all orders it is sufficient to use the T (u) of

eq. (2.8), see ref. [51]. This will be done in the perturbative expansion, eq. (2.19), and in

the numerical analysis that follows.

Let us now examine the result of eq. (2.17). The first observation is that this Borel

function has no renormalon singularities. To see this note first that (despite appearance)

there is no double pole at u = 1 inside the curly brackets: for u −→ 1 the hypergeometric

function reduces to 2F1

(
[1, 1], [2 − u], x

)
−→ 1/(1 − x), so the double pole cancels. Now,

since the curly brackets contain just simple poles at integer values of u, upon taking the

sin πu factor into account, one concludes that there in no renormalon in B(x, u).

The absence of Borel singularities may be interpreted as an indication that the per-

turbative expansion in x space should be good. As we shall see this is not the case. First

of all, at large x the effective scales are parametrically lower than mb [18]: the dynamics is

dominated by momenta of order mb

√
1 − x, the jet mass, and mb(1− x), the soft scale as-

sociated with the momentum distribution of the b quark. The analytic expression in (2.17)

immediately indicates the presence of the former through its (1 − x)−u dependence; to

isolate the latter it is convenient to first apply the identity:

2F1

(
[1, 1], [2 − u], x

)
= (1 − u)

[
−1

u
2F1

(
[1, 1], [1 + u], 1 − x

)
+

π

sin πu
(1 − x)−uxu−1

]

(2.18)

in (2.17), revealing the dependence on (1 − x)−2u. Moreover, the absence of renormalons

does not imply the existence of the Borel sum: the Borel integral (2.15) may not converge

at u → ∞. It turns out that the Borel integral exists for sufficiently small x values, but it

does not exist at large x. We shall return to discuss this issue below, after considering the

perturbative expansion order by order.

As usual, renormalons do appear upon taking moments [18]: when integrating over all

values of x, including the endpoint region x → 1, soft gluons necessarily contribute and

consequently, infrared renormalon singularities at integer and half integer values of u are

generated. We emphasize that this is not a disadvantage of the moment space formulation,

but rather its strength: renormalon singularities are a useful tool to understand the rôle

of non-perturbative power corrections.

Perturbative expansion in x space in the large–β0 limit

The perturbative expansion of eq. (2.15) is:

1

ΓO7

dΓO7

dx
= δ(1 − x) +

CF

β0

∞∑

n=1

an

[
rβ0
n (x)

]
+
×

(
1 + O(1/β0)

)
, (2.19)

where

an ≡ 1

n!

∫ ∞

0
duT (u)

(
Λ2

m2
b

)u

un =

(
− d

d ln m2
b

)n (
αs(mb)β0

π

)
=

(
αs(mb)β0

π

)n

+ · · · ,

(2.20)

7Of course, this can be done in a renormalization–scheme invariant way only as far as two–loop effects

(β1) are concerned.
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where the dots stand for higher–order terms, O(αs
n+1) and so on, containing powers of

β1/β
2
0 . Up to O(αs

2) such terms do not appear, and eq. (2.19) reduces to

1

ΓO7

dΓO7

dx
= δ(1 − x) +

αs(mb)

π
CF

[
rβ0

1 (x)
]
+

+

(
αs(mb)

π

)2

CF β0

[
rβ0

2 (x)
]
+

+ · · · . (2.21)

The coefficients rβ0
n can be obtained order by order from the expansion of 1

2B(x, u) =∑∞
n=0 rβ0

n (x)un/n! in eq. (2.17). To this end we need the expansion of the hypergeometric

function, which is available based on ref. [66]. We present this expansion and the resulting

coefficients up to O(αs
4) in appendix B.

It is straightforward to include the remaining C2
F and CACF terms at O(αs

2) based

on the results of ref. [39]8:

1

ΓO7

dΓO7

dx
= δ(1 − x) +

αs(mb)

π
CF [r1(x)]+ (2.22)

+ CF

[
Nfr

Nf

2 (x) + CF rCF
2 (x) + CArCA

2 (x)
]
+

(
αs(mb)

π

)2

+ · · ·

= δ(1 − x) +
αs(mb)

π
CF

[
rβ0

1 (x)
]
+

+ CF

[
β0r

β0

2 (x) + CF rCF
2 (x) + CA

(
rCA
2 (x) +

11

2
r
Nf

2 (x)

)]

+

(
αs(mb)

π

)2

+ · · · .

The partial sums of eq. (2.19) as well as the Borel sum of eq. (2.15) include the large–β0,

rβ0
n (x) terms at each order. Thus, to have a complete result to O(αs

2) we now include

the non-BLM (CF and CA) terms in the square brackets of eq. (2.22). When using Borel

summation for the running–coupling contributions the normalized spectrum at NNLO can

be expressed as:

1

ΓO7

dΓO7

dx
= δ(1 − x) +

[
CF

2β0

∫ ∞

0
duT (u)

(
Λ2

m2
b

)u

B(x, u)

]

+

(2.23)

+ CF

[
CF rCF

2 (x) + CA

(
rCA
2 (x) +

11

2
r
Nf

2 (x)

)]

+

(
αs(mb)

π

)2

+ · · · .

The results are shown together with the pure running–coupling contributions in the plot

on the right hand side in figure 4. As already concluded in ref. [39], these additional

contributions are moderate, so at least at this order, the running–coupling contributions

dominate.

Let us now examine the convergence of the expansion and the possibility to sum up

the series à la Borel. figure 4 summarizes the numerical results using mb = 4.875 GeV and

Λ = 0.332 GeV with Nf = 4 and two–loop running coupling. The partial sums obtained by

truncation of eq. (2.19) at increasing orders converge well at small energies Eγ <∼ 1.5 GeV

and less so as the energy increases. Nevertheless, the increasing–order contributions do

8We wish to thank Melnikov and Mitov for providing us with their final expressions in the form of a

Maple file.
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decrease monotonically. This decrease is related of course to the absence of renormalons

in eq. (2.17). This usually means that the series is Borel summable. However, since it is

a divergent series there is no straightforward relation between partial sums and the Borel

sum.

As anticipated, the series is in fact Borel summable only below a certain energy,

x < xmax: the convergence of the Borel integral at large u is guaranteed only owing to

the suppression by (Λ2/m2
b)

u; as already observed in ref. [18], because of the presence

of (1 − x)−2u contributions in B(x, u) (see eq. (2.18)), it is predominantly the soft scale

mb(1−x) which sets the argument of the coupling at large x. Based on these considerations

we can deduce from eq. (2.17) an estimate of where the Borel sum will cease to exist:

Emax
γ ' mb

2

(
1 − e5/6Λ/mb

)
' 2.06 GeV. (2.24)

Indeed, as shown in figure 4 the Borel sum is close to the high–order partial sums

at small energies and to lower–order ones at higher energies9, until it eventually reaches

a peak, bends downwards and becomes negative. Soon after it breaks down completely

owing to non-convergence of the u integral at u −→ ∞, in accordance with eq. (2.24).

We note that increasing–order partial sums become quite different from each other at

Eγ >∼ 2 GeV; this obviously means they cannot be thought of as an approximation to the

spectrum. Also the corresponding Borel sum, although unique where it exists, does not

look anything like a physical spectrum would. Its complete breakdown according to (2.24)

is indicative of the low scales involved. But even if the bottom mass were much higher, this

SDG approximation cannot be expected to describe the Sudakov region. Running–coupling

corrections are not the most important corrections for Eγ −→ mb/2. In the large–β0 limit

the most singular terms at large x are αs
n CF β0

n−1 lnn(1 − x)/(1 − x), while the full

perturbative expansion contains double logarithms of form αs
n CF

n ln2n−1(1− x)/(1− x),

as well as other subleading logarithms which are associated with multiple soft and collinear

emission. With increasing order, the latter become more important at large x compared

to the former. Finally, returning to figure 1, we observe the remarkable difference between

increasing–order partial sums and the DGE result in the peak region. The gap between

them should be understood as the contribution of multiple soft and collinear gluon emission,

with a particular regularization of the divergent sum. In contrast with the fixed–order

partial sums and the SDG Borel sum, the DGE result provides a useful approximation to

the spectrum in the peak region.

3. Resummed spectra for individual matrix elements other than G77

In section 2 we considered in some detail the calculation of the normalized spectrum of

the magnetic dipole operator. It is well known that in contrast with the total width, the

9For very low Eγ <
∼ 0.3 GeV the Borel sum is still larger than the O(αs

4) partial sum; as the energy

increases it gradually approaches the O(αs
3) partial sum, crossing it around Eγ ' 1.65 GeV; around

Eγ ' 1.9 GeV it crosses the O(αs
2) partial sum and soon after turns over and starts decreasing; finally

close to 2GeV it crosses the leading–order result and continues to decrease.
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spectrum is not so sensitive to the details of the short–distance interaction, and therefore

the G77 spectrum computed above can be thought of as an approximation to the physical

spectrum. However, to make precision estimates of the partial BF as a function of the cut,

it is important to compute the spectra of other matrix elements as well. Since fixed–order

results for all matrix elements but G77 are available to O(αs) only, the accuracy we can

hope to achieve in the description of the spectra of individual Gij matrix elements is not

as high.

We will make the approximation where the matrix elements Gij (for any i and j

other than 77) are written as O(αs) hard coefficient functions, which are O(N0) for Gi7

interference terms and O(N−1) for other terms, times the same Sudakov factor discussed

in the context of G77. This approximation is motivated by the following observations:

• Independently of the nature of the short–distance interaction, all non–integrable real–

emission corrections at any order, namely corrections to the moments that scale as

N0 times logarithms at large N , are necessarily associated with soft and collinear

radiation around the same Born–level configuration involving a b quark in the initial

state and an unresolved quark jet in the final state.

• All operators mix into O7 under renormalization. Moreover, the O(αs) result of Gij

is dominated by the virtual diagrams, which are proportional to the tree level G77.

This observation was already used in ref. [49] arguing that O(Nfα2
s) corrections can

be well approximated by computing both real and virtual diagrams for O7 and only

virtual diagrams for O1,2,8.

It should be noted that while the O(N0) interference terms do indeed involve the same

Sudakov factor, O(N−1) contributions associated with integrable bremsstrahlung correc-

tions, do not share this property, and in general involve a new jet function. In this respect,

our calculation of the resummed spectra of Gij that do not involve O7 is a cruder approxi-

mation; as we shall see the relative weight of these contributions, especially in the Sudakov

region, is small.

The structure of this section is as follows: in section 3.1 we discuss the small Eγ behav-

ior of the different matrix elements and then extend the matching procedure of section 2

accordingly, using the known O(αs) coefficients. In section 3.2 we present numerical re-

sults for the resummed spectra of individual matrix elements, based on this O(αs) matching

procedure.

3.1 The small Eγ asymptotic behavior and matching at O(αs)

Looking at the small photon–energy limit, Eγ → 0, we find the following asymptotic

behavior:

dGij(E0,mb)

dE0
= O(E3

0); (3.1)
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except for





dG88(E0,mb)

dE0
=

1

E0

[
CF

αs
π

2
9

(
1 − ln mb

ms

)
+ O(αs

2)
]
;

dG78(E0,mb)

dE0
=

4E0

m2
b

[
CF

αs
π

1
3 + O(αs

2)
]
.

As discussed in section 2.2, the phase–space suppression for Eγ → 0 is EγdEγ , and any

additional suppression or enhancement of the Gij spectrum in this limit depends on the

dynamics, and therefore on the operators Oi and Oj . To understand the difference between

O8 and O7 in this respect, note that in the O8 amplitude the gluon couples to the changing–

flavor current through Gµν while the photon is emitted as bremsstrahlung, whereas in the

O7 case it is the other way around. While the O7 coupling (1.4) gives rise to a linear

dynamical suppression with the photon energy, photon bremsstrahlung involves a soft

singularity, namely a 1/Eγ enhancement. Combining this behavior of the amplitudes with

the phase–space factor one immediately obtains the different Eγ → 0 limits in (3.1) for

G77, G88 and the interference G78. At O(αs), the behavior of matrix elements containing

O1,2 is similar to that of O7. The reason for this is that the photon cannot be emitted as

bremsstrahlung, but must instead couple to the virtual charm propagating in the loop (the

diagram with just gluon coupling to the charm loop vanishes).

Thus in most cases there is a cubic power suppression of the spectrum for extremely

soft photons, Eγ → 0. When matching Sudakov resummation for the high photon energy

endpoint (Eγ = mb/2) into the fixed–order results, it is therefore useful to take J = 3

as for the O7 contribution. As explained in detail in section 2.2, in this way artifacts

of resummation away from the hard photon endpoint are avoided (the more pronounced

soft–energy tail of O8 and its interference with O7 will be accounted for at fixed order).

In general, the matching involves a separation of the real–emission contributions be-

tween momentum and moment space (see section 3 and appendix C in ref. [17]). The

separation we use is defined such that the leading contributions at small ∆ are always

treated in moment space:

φij(∆) = η̃ij(∆) + ξ̃ij(∆) with ξ̃ij(∆) = O(∆2). (3.2)

Introducing the Mellin transform of η̃ij(∆) as in [17]:

µ̃ij(N) ≡
∫ 1

0
dxxN−1 dη̃ij(∆)

d∆

∣∣∣∣
∆=1−x

; η̃ij(∆) =

∫ c+i∞

c−i∞

dN

2π i

(1 − ∆)1−N

N − 1
µ̃ij(N),

(3.3)

we get:

Gij(Emin,mb) = CF
αs(mb)

π

[
3

8
δj=7Re

{
ri + γ

(0)
i7 ln

mb

µ

}
+ η̃ij(∆)

]

+ CF
αs(mb)

π
ξ̃ij(∆) + O(αs

2)

=

∫ c+i∞

c−i∞

dN

2π i

(1 − ∆)1−N

N − 1

[
CF

αs(mb)

π
V

(1)
ij (N) + O(αs

2)

]
× S̃ud

(J)
(N,mb)
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+ CF
αs(mb)

π
ξ̃ij(∆) + O(αs

2), (3.4)

where in the second expression used eq. (3.3), included the Sudakov factor resumming large

logarithms at O(αs
2) and beyond, and defined

V
(1)
ij (N) ≡ 3

8
δj=7Re

{
ri + γ

(0)
i7 ln

mb

µ

}
+ µ̃ij(N). (3.5)

Note that µ̃ij(N) are all O(1/N) (appendix C in [17]) so V
(1)
ij (N) is of O(1) at large N for

j = 7 (the interference terms for any i are O(1) at large N) while it is O(1/N) otherwise.

For 77, 78 and 88 matrix elements the NLO contribution is treated entirely in moment

space: η̃ij(∆) = φ̃ij(∆) and ξ̃ij(∆) = 0, so

µ̃78(N) =
2

3

[
− 1

(N − 1)N
(Ψ(N) + γE) +

1

N2
+

1

4

1

N + 2
+

1

N

]
. (3.6)

and

µ̃88(N) = −
[
2

9

1

N
− 2

9

1

N − 1
− 1

9

1

N + 1

](
ln

mb

ms
− 1

2
Ψ(N) − 1

2
γE

)
(3.7)

− 1

18

1

N + 2
+

1

6

1

N
− 2

9

1

N − 1
+

1

36

1

N + 1
+

1

9N2
− 1

18

1

(1 + N)2
.

Note that the latter expression has a pole at N = 1, owing to the soft–photon singularity.

However, this should not affect the calculation of Gij(Emin,mb) with non-zero Emin so long

as the contour in eq. (3.4) is to the right of N = 1.

For all the other contributions, namely the ones associated with the operators O1 and

O2 and their interference with O7 and O8 (this includes φ22, φ27, φ11, φ12 φ17, φ18 and φ28)

we introduce a separation according to eq. (3.2) with a non-trivial ξ̃ij(∆). The specific

separation used in appendix C in [17] was based on defining η̃ij(∆) as the leading–order

term in the expansion of φij(∆) at small ∆. This simple procedure is not adopted here,

since it would introduce a constant differential spectrum at very small Eγ , in contradiction

with the power suppressed behavior of eq. (3.1). Instead we will define η̃ij(∆) such that it

would capture both the small ∆ limit and certain features of the ∆ → 1 limit. As shown

in appendix C in [17] for small ∆, φij(∆) is O(∆), so according to eq. (3.2) we require

for small ∆ : η̃ij(∆) ' φ′
ij(∆ = 0) × ∆ + O(∆2). (3.8)

As explained above (see eq. (3.1)) for ∆ → 1 the differential spectrum falls as the third

power 1 − ∆ so the integrated spectrum approaches a constant as the fourth power of

(1 − ∆). We therefore require:

for large ∆ : η̃ij(∆) ' φij(∆ = 1) + O
(
(1 − ∆)J+1

)
, (3.9)

where J = 3, such that (1 − ∆)4 contributions appear through both the moment–space

expression (η̃ij) and the momentum–space residual (ξ̃ij), while ones with (1 − ∆)h for

h = 1, 2, 3, which are absent in the physical spectrum, do not appear in either. Both
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φ′
ij(∆ = 0) and φij(∆ = 1) can be explicitly computed from the expressions in eq. (C.1)

in [17]. To accommodate (3.8) and (3.9) we define:

η̃ij(∆) ≡ φij(∆ = 1)

[
1 − (1 − ∆)J+1

(
1 + (J + 1)∆

)]
+ φ′

ij(∆ = 0) (1 − ∆)J+1 ∆. (3.10)

In computing Gij(E0,mb)/Gij(Emin,mb) using eq. (3.4), ξ̃ij(∆) is readily obtained using

ξ̃ij(∆) = φij(∆) − η̃ij(∆), while µ̃ij(N) is computed according to eq. (3.3) by the Mellin

conjugate of the derivative of eq. (3.10), namely:

µ̃ij(N) ≡
∫ 1

0
d∆(1−∆)N+J−1

[
φij(∆ = 1)(J + 1)(J + 2)∆+φ′

ij(∆ = 0)
(
1 − (J + 2)∆

)]

=
(J + 1)(J + 2)

(N + J)(N + J + 1)
φij(∆ = 1) +

N − 1

(N + J)(N + J + 1)
φ′

ij(∆ = 0). (3.11)

As required, the first moment µ̃ij(N = 1), corresponding to the total width, is given

by φij(∆ = 1), while the large–N asymptotic behavior is determined by φ′
ij(∆ = 0).

Importantly, when using the matching procedure of eq. (3.4), where S̃ud
(J)

(N,mb) is given

by eq. (2.14) and µ̃ij(N) by eq. (3.11), we are guaranteed that no spurious singularities

at N > −J would appear (singularities do appear for N = −J , N = −J − 1 etc.), which

could alter the small–Eγ behavior.

3.2 Resummed spectra for individual matrix elements

In the previous sections we established a procedure for matching the Sudakov–resummed

spectrum with the known fixed–order expansion. For G77 this is done to NNLO, O(αs
2),

while for the matrix elements of other operators and their interference with O7, to O(αs).

This allows us to study the shape of each contribution and eventually have better control

on the cut dependence of the total BF.

figure 5 shows the contributions to the differential BF from each matrix element Gij

according to eq. 4.8 below, as well as a comparison between the shapes (normalized spectra)

of the different matrix elements. In general, it confirms the lore that the shapes of the

spectra of the most contributing operators do not vary much, and the shape of the total

spectrum is roughly the same as the one for O7. However, the shapes are not completely

identical and the details do depend on the relative contributions of the different operators.

These depend of course also on the coefficient functions. Numerically, the most important

effect in the experimentally accessible energy range is that of G27 which is comparable

in magnitude to G77, but is somewhat narrower. The effect it has on the differential

distribution along the tail, e.g. between 1.8 and 2GeV, is significant. The G78 spectrum,

on the other hand, is somewhat wider and it has a higher small-x tail. A rather different,

and significantly wider shape is presented by G28 and even wider still by G22 (and likewise

those corresponding to O1 instead of O2). These affect the differential spectrum at smaller

energies, below 1.8 GeV.
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Figure 5: Left: the contribution to the spectrum from the separate operators and their mixing,

together with their sum, the total width, based on eq. (4.8). We notice that the dominant contri-

butions (from 77 and 27) have similar shapes in the Sudakov region, although their tails for small

Eγ are significantly different. Right: the spectrum of each matrix element Γij (see eq. (4.8)) has

been normalised to better display the various shapes. Since effectively O1 = 1

6
O2, the curves for 17

and 27 are identical. The same is true for the groups (18, 28) and (11, 12, 22).

4. Partially–integrated BF and moments with a photon–energy cut

In the previous sections we computed the B̄ −→ Xsγ spectra using DGE. We improved the

calculation in ref. [17] in various ways: we included the NNLO corrections in full in the G77

sector (section 2.1 and appendix A), introduced a new method to constrain the behavior

of the resummed spectrum away from the Sudakov region (section 2.2 and appendix A.3),

and matched the resummed spectrum with the fixed–order expansion, separately for each

matrix element Gij (section 3). In this section we will make use of these advancements

to make predictions for measurable quantities: the partial BF and the first few moments

as a function of the cut on the photon energy. We begin in section 4.1 by computing the

total BF and discussing its theoretical uncertainty, then in section 4.2, we consider the

partial BF with a cut and discuss cut–dependent uncertainties, and finally in section 4.3

we present results for the first few moments and analyze numerically the relation between

renormalon contributions, power corrections and support properties.

4.1 The total BF

The calculation of the total BF presents a challenge in its own [7, 8]. First, this calculation

has to accommodate a large hierarchy of scales MW ,mt À mb. This is dealt with [4 – 8]

by the well–established machinery of the effective Weak Hamiltonian, which facilitates the

resummation of large logarithms, ln mW /mb, to all orders in the strong coupling. Estimat-

ing the BF therefore involves the perturbative calculation of the matching coefficients at

the high scales, evolution of the different operators from MW to mb and finally, the contri-

bution of the matrix elements of the different operators to B̄ −→ Xsγ. The main challenge
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here is at the perturbative level: even the matrix elements present little sensitivity10 to

non-perturbative effects.

The NLO calculation was completed 5 years ago (see [8] and refs. therein) and some of

the ingredients have been recently brought to the NNLO level. This includes, in particular,

the matching coefficients at the Weak scale [46], partial calculation of the evolution ma-

trix [47, 48] and, most importantly, the two–loop matrix element of the O7 operator [44, 45].

However, other essential ingredients are still missing. Amongst these are the matrix ele-

ments of other operators, especially G27, which contributes to the BF almost as much as

G77, despite the fact that its perturbative expansion starts at O(αs), rather than at O(1).

The renormalization scale of Gij other than G77 is obviously not fixed at this level.

Beyond G77, which is known to NNLO in full [44, 45], the virtual β0αs
2 corrections to

Gij have been computed in ref. [49]. It is likely that these running–coupling corrections

constitute a major part of the NNLO contribution — this has been supported by the

finding of ref. [44]. Here we shall make use of this available, partial NNLO information on

the matrix elements, which are the most important ingredient, neglecting NNLO effects in

the Wilson coefficients at the MW scale and in the evolution. A more complete NNLO BF

estimate is due when some of the missing ingredients — in particular G27 at O(αs
2) —

become available.

Another difficulty in the evaluation of the BF is its sensitivity to the bottom mass,

which is raised to the fifth power in (1.1). Amongst these five powers, two are associated

with the operator itself, and therefore correspond to the short–distance mass mMS

b , whereas

the additional three result from phase–space integration, and therefore correspond to the

pole mass, mb. As discussed in the introduction, the pole mass has a leading renormalon

ambiguity at u = 1/2, implying that the perturbative expansion of the total width in the

on-shell scheme is badly divergent. Writing (1.1) order by order,

Γ(B̄ −→ Xsγ,E > E0) =
αemG2

F

32π4
|VtbV ∗

ts|2
(
mMS

b (mb)
)2

m3
b (4.1)

×
∑

i,j, i≤j

Ceff

i (µ)Ceff

j (µ)Gij(E0, µ),

=
αemG2

F

32π4
|VtbV ∗

ts|2
(
mMS

b (mb)
)2

m3
b

×
[
f0(µ) + f1(µ)

αs(µ)

π
+ f2(µ)

(
αs(µ)

π

)2

+ · · ·
]

︸ ︷︷ ︸
F

,

the expansion coefficients fn(µ) are therefore expected to grow factorially with the order n

owing to running–coupling corrections. Judging from what we know of the pole mass — see

appendix B in ref. [17] — this divergence sets in already at the first few orders. A similar

situation occurs for other inclusive decays, for example for the charmless semileptonic decay

10A possible exception is the large distance sensitivity associated with cc̄ pairs.
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GF = 1.16637 · 10−5 GeV−2; αem = 1/(130.3 ± 2.3)

|Vts| = (41.13 ± 0.63) · 10−3; |Vtb| = 0.999119 ± 0.000026 [67]

MW = 80.388 ± 0.035 GeV

mMS
t (mMS

t ) = 165 ± 5 GeV

αs(MZ = 91.19) = 0.1176 ± 0.0020 =⇒ η ≡ αs(MW )/αs(µ) ' 0.561

mMS
s ' 0.15 GeV

mMS
c (mMS

c ) = 1.295 ± 0.015 GeV [68]

mMS

b (mMS

b ) = 4.20 ± 0.04 GeV [68, 69]

Table 1: Values of input parameters in the calculation of the BF and their uncertainties.

B̄ −→ Xulν̄ [34 – 36]:

Γtotal

(
B̄ −→ Xulν̄

)
=

G2
F |Vub|2m5

b

192π3

[
1 + s1

αs(µ)

π
+ s2(µ)

(
αs(µ)

π

)2

+ · · ·
]

︸ ︷︷ ︸
Gu

. (4.2)

In this case the coefficients have been computed to NNLO in ref. [70], where large running–

coupling corrections already appear. Moreover, in this case it is possible to interpolate

reliably [52] (see also ref. [71 – 73]) between the first few orders and the known asymptotic

behavior of the series, which is set by the u = 1/2 renormalon of the pole mass. In this

way a precise evaluation of the total charmless semileptonic BF can be made directly using

the on-shell scheme, where the u = 1/2 renormalon ambiguities of the pole mass and the

series in Gu in eq. (4.2) are regularized using the PV prescription. According to section 2

in ref. [52], this results in the following values11:

mb|PV
= 4.89 ± 0.05GeV G1/5

u

∣∣∣
PV

= 0.928 ± 0.002, (4.3)

corresponding to Nf = 4. Here the error in the pole mass mb is dominated by the error

on the short distance mass mMS

b = 4.20 ± 0.04 (as quoted in table 1). The uncertainty in

Γtotal

(
B̄ −→ Xulν̄

)
/|Vub|2 is largely determined by this error.

A useful tool in the calculation of the total B̄ −→ Xsγ width is to normalize it by the

semileptonic width; both b → c and b → u have been used in the past. In this way one

exploits the better control one has on higher–order corrections in the semileptonic case,

and reduces the sensitivity to the pole mass. There is however an important difference

between the radiative decay width (4.1) and the semileptonic one (4.2) in the power of the

pole mass. Thus, while the ratio

Γ(B̄ −→ Xsγ,E > E0)
/

Γtotal

(
B̄ −→ Xulν̄

)
(4.4)

itself is an observable, and therefore renormalon free, it still contains an explicit dependence

on the pole mass through (mMS/m
pole
b )2. This has been dealt with in the past by resorting

11It is crucial to defined both mb and G
1/5
u using the same prescription; the product mb G

1/5
u is prescription

independent. Throughout this paper we use the PV prescription when refering to these parameters, although

this will not be explicitly reflected in the notation.
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to some alternative renormalon–free mass scheme, a step that unavoidably introduces some

uncertainty that is hard to quantify. Here we suggest an alternative procedure that utilizes

the charmless semileptonic width to eliminate the explicit power dependence on the pole

mass and yet does not require any additional mass scheme. This procedure is explained

below.

Using the semileptonic width

In order to use the semileptonic result (4.2) to normalize the radiative one (4.1) in a renor-

malon free manner, we first write the series for F over G
3/5
u . By virtue of the cancallation

of renormalon ambiguities in eq. (4.1) and in eq. (4.2), this ratio is renormalon free, so

it can be evaluated at fixed order. To recover the result for the radiative decay width in

eq. (4.1) we then multiply the series for F/G
3/5
u by the PV result [52] for Gu quoted in

eq. (4.3), namely G
3/5
u = (0.928)3/5 and use the corresponding PV pole mass in the overall

m3
b power (the product m3

bG
3/5
u is prescription–independent, see eq. (4.2)):

Γ(B̄ −→ Xsγ,E > Emin) =
αemG2

F

32π4
|VtbV ∗

ts|2
(
mMS

b (mb)
)2

×

m3
b G3/5

u

[
F (Emin)/G

3/5
u

]

Fixed Order

(4.5)

with

[
F (Emin)/G

3/5
u

]

Fixed Order

≡ f0(µ) +

(
f1(µ) − 3

5
s1f0(µ)

)
αs(µ)

π
(4.6)

+

(
f2(µ) − 3

5
s1f1(µ) − 3

5
s2(µ)f0(µ) +

12

25
s2
1 f0(µ)

)(
αs(µ)

π

)2

+ · · · .

Similarly, in order to use the resummed calculation of the normalized integrated spectra

for individual matrix elements, namely Gij(E0)/Gij(Emin), we define

Fij(Emin) = Ceff

i (µ)Ceff

j (µ)Gij(Emin, µ) (4.7)

= f ij
0 (µ) + f ij

1 (µ)
αs(µ)

π
+ f ij

2 (µ)

(
αs(µ)

π

)2

+ · · ·

and write

Γ(B̄ −→ Xsγ,E > E0) =
αemG2

F

32π4
|VtbV

∗
ts|2

(
mMS

b (mb)
)2

m3
b (4.8)

×
∑

i,j, i≤j

G3/5
u

[
Fij(Emin)/G

3/5
u

]

Fixed Order

[
Gij(E0)

Gij(Emin)

]

Resummed

.

This formula will be used for the numerical analysis that follows. In figure 5 above we show

the contribution from each of the terms Γij . eq. (4.8) will allow us to study the theoretical

uncertainties associated with different ingredients as a function of the cut.
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Figure 6: The scale dependence of the total BF (the BF with Eγ > mb/20) at LO, NLO and

NNLO, according to eqs. (4.5) and (4.6). At NNLO only β0αs
2 terms are included in f2(µ).

The total BF and the theoretical uncertainty

Using eq. (4.5) we obtain the following result for the total BF:

BF(Eγ > mb/20) =
(
357 ± 40(µ) ± 19(µc) ± 21(param.)

)
· 10−6, (4.9)

where, as explained above, we used (4.6) to NNLO where f1(µ) is the full NLO coefficient

while f2(µ) is the β0 part of the NNLO corrections to the matrix elements, with the

parameters of table 1, which yield (4.3). The central value is based on µ = mb and µc =

mb/2, and the three errors represent the variation of (1) µ and (2) µc as explained below,

and (3) the parametric uncertainty in mMS

b and αs
MS according to table 1, respectively.

Let us discuss now the theoretical uncertainty in some more detail. Having separated

the calculation into that of Wilson coefficients on the one hand, and matrix elements on the

other, the stability of the result with respect to the renormalization point of the operators

becomes an essential measure of the accuracy of the calculation. It should be emphasized

that by modifying µ in (4.1) or in (4.8) both the renormalization scale of the coupling and

the factorization scale (i.e. the separation between the coefficient functions and the matrix

elements) is changed. This necessarily implies reshuffling of contributions between different

matrix elements according to the anomalous dimension matrix.

It should be noted that there are various possibilities for choosing the renormalization

point of the short distance mass in (4.8), which are of course reflected in the anomalous

dimension matrix. We have chosen to fix this scale at the pole mass mb, rather than to

vary it with µ.

Figure 6 presents the variation of the total BF as a function of µ, with the default

parameters of table 1 and with
√

z ≡ mc(µc)/mb = 0.2215 (see below). We see that at

leading order there is a large scale dependence (that of (Ceff

7 (µ))2) which get significantly

smaller at NLO and NNLO. Note that at NNLO only β0αs
2 corrections are included here.
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The reason for suppressing the known O(αs
2) terms for G77 beyond this approximation, is

that there is a large cancellation, at each order in the expansion, between G77 and G27. It

is therefore essential to include the same type of corrections for both12. Note that there is

no significant reduction of the scale dependence by including the β0αs
2 NNLO corrections.

This is a reflection of the fact that important NNLO corrections are still missing: the

leading scale dependence at each order, O(αs
n lnn mb/µ), is associated with the evolution

of the operators and their mixing.

Another important source of uncertainty in the calculation of the total BF [7] is the

renormalization point µc of the charm mass mc entering through the ratio z ≡ m2
c(µc)/m

2
b

into the expressions for the matrix element involving O2 (and O1), notably G27. We

have chosen the central value for z as
√

z = 0.2215, corresponding to an intermediate

renormalization point, µc ' mb/2 GeV, which is in between the b mass and the c mass.

This is close to the central value chosen in [7]. For the error estimate we vary z in the

range suggested in that paper, namely 0.18 <
√

z < 0.26. This uncertainty will reduce

once the calculation of the matrix elements involving O2 is complete.

Let us also note that the results of ref. [49] for the β0αs
2 corrections involving charm

loops were computed as an expansion in z = mc(µc)/mb. When using this expansion we

assume that it is valid at the physical value of z, an issue that was checked in ref. [49].

Given that z is already varied over a large range, we do not consider the residual error

associate with using a finite–order expansion in z as an independent source of uncertainty.13

We note that the central value of eq. (4.9) is somewhat lower than that of previous

estimates. This is despite the fact that NNLO corrections increase the BF: using the same

procedure at NLO we get BF(Eγ > mb/20) = 322 · 10−6. These results can be compared

with the result by Gambino and Misiak [7]: BF(Eγ > mb/20) = 373 · 10−6, who used the

NLO calculation. The main change is due to the different procedure for normalizing the BF

by the semileptonic width. Note, in particular, that ref. [7] evaluated the factor mMS

b /mpole
b

appearing in (4.4) by replacing it with mMS

b /m1S
b . At NLO this replacement has no effect

on the expansion since the expansion of m1S
b /mpole

b starts at O(αs
2), however, numerically,

this ratio is ∼ 0.95. This explains much of the difference in the central values between

the two estimates. It should also be noted that the uncertainty we find from varying the

renormalization scale µ, ±11%, is larger than those in refs. [7, 8], and consequently the

combined uncertainty on the total BF is about ±13.7%, somewhat larger than previous

estimates.

Finally, we point out that certain small corrections have been neglected in our cal-

culation. The largest amongst these is the electroweak corrections whose effect has been

estimated [7] to be −3.8% of the BF. Another correction is the power–suppressed Λ2/m2
b

that was estimated as +2.5% of the BF [7]. As soon as more complete NNLO results

become available these corrections should be taken into account as well.

12For the default values of the parameters and with µ = mb, using the full G77 NNLO correction instead

of its β0αs
2 component (while keeping other matrix elements with the β0αs

2 according to [49]) the BF

increases by ∼ 2.5%.
13See Note added concerning a new publication on the subject that appeared upon completion of this

work.
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Figure 7: Left: The central value and uncertainty on the branching fraction ratio BF(Eγ > E0)

as a function of the cut on the photon energy E0. The black central line is obtained with the

standard values of the parameters, while the (red) dot-dashed line is obtained by the same choice

of parameters as for the dot-dashed line in figures 10 and 11. Right: The breakdown on sources to

the uncertainty in the branching fraction.

4.2 BF for Eγ > E0

In figure 7 we present the BF as a function of the cut, BF(Eγ > E0). The uncertainty band

in this figure as well as in figures 3, 8 and 10 to 12, indicates the theoretical uncertainty

obtained by varying separately the following parameters, and summing the respective un-

certainties in quadrature:

• The renormalization scale of the operators (and the coupling) in the calculation of the

total width according to eqs. (4.5) and (4.6) between mb/2 and 2mb where µ = mb

is the default.

• The renormalization point µc of the charm mass mc(µc) entering the matrix elements

involving O2 and O1. As mentioned above we use: 0.18mb < mc(µc) < 0.26mb.

• The renormalization scale in the matching coefficients of the resummed spectra

(A.43), between mb and mb/2, where µ = mb is the default.

• The parameters controlling the details of the quark distribution function (corre-

sponding to the leading “shape function”) BS(u), which enter the Sudakov factor in

eq. (2.14), with the corresponding power corrections, namely (NΛ/mb)
k for any k ≥ 3.

Specifically, as discussed in section 4.3 below, we vary C3/2 in eq. (2.9) (see eqs. (3.27)

to (3.29) in ref. [52]) and fPV in eq. (4.12) below within a range that is determined

based on the support properties of the spectra, according to CutA, CutB < 0.01,

where the functions CutA and CutB are defined in (4.13).

• The short distance parameters, αMS
s and mMS

b , within their error ranges as indicated

in table 1.
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Figure 8: Left: The central value and uncertainty on the branching fraction ratio BF(Eγ >

E0)/BF(Eγ > .2445GeV) and the branching fraction itself (insert) as a function of the cut on

the photon energy E0. Right: The breakdown on sources to the uncertainty in the branching

fraction ratio. For low values of the cut, the uncertainty is dominated by the contribution from

a variation in the renormalization scale in the matching coefficients (A.43). This relatively large

effect is originating from the matrix elements other than G77 that are known to NLO accuracy

only. For E0 . 2.1 GeV, the parameters controlling the behavior in the Sudakov region contributes

only little to the overall uncertainty. The (red) dot-dashed lines are obtained by the same choice

of parameters as for the dot-dashed line in figures 10 and 11.

Let us point out that the effect of the charm mass on the running of the coupling is

neglected throughout the calculation of the spectra. We use Nf = 4, and ignore the charm

threshold. The consequences of this approximation have not yet been studied. They

certainly worthwhile investigating since at large N the coupling in the Sudakov factor is

effectively evaluated at scales below the charm mass. We further neglect non-perturbative

effects that go beyond the summation of the leading powers, (NΛ/mb)
k. This includes

the so-called “subleading shape functions”, namely power corrections that are suppressed

by 1/N compared to the ones we include, as well as the non-perturbative structure of

the final state, which can be viewed as power corrections in (NΛ2/m2
b), or directly in

momentum space as exclusive states.

Excluding very high cut values, the largest uncertainties shown in figure 7 have very

little dependence on the cut. This includes, in particular, the renormalization scale of the

operators and the value of mc(µc). The cut dependence of these contributions, is entirely

due to the change their variation induces on the relative weight of the different matrix

elements in eq. (4.8). Furthermore, figure 7 shows that the uncertainty associated with the

values of the short distance parameters, is also insensitive to the cut for sufficiently mild

cuts. It is therefore useful to analyze separately the cut–dependent uncertainty. This is

done in figure 8, where we display the partial BF ratio BF(Eγ > E0)/BF(Eγ > mb/20)

as a function of E0. This ratio is needed, and can be used for extrapolating experimental

measurements from the region Eγ > E0 to the whole of phase space. Some numerical values

for the extrapolation factor are presented in table 2. As expected, the uncertainty of the

extrapolation increases as the cut is increased. However, the rate of increase is not too
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E0 (GeV) default min max

1.6 1.028 1.025 1.058

1.7 1.034 1.031 1.071

1.8 1.045 1.041 1.090

1.9 1.062 1.056 1.117

2.0 1.092 1.083 1.160

2.1 1.150 1.134 1.238

2.2 1.287 1.247 1.414

2.3 1.692 1.556 1.965

Table 2: Extrapolation factors for the B̄ −→ Xsγ BF, BF(Eγ > mb/20)/BF(Eγ > E0)

high: precise experimental measurements with fairly stringent cuts, such as Eγ > 2.0 GeV,

can still be useful. As shown in figure 8, up to cuts as high as E0 = 2.3 GeV, the largest

source of uncertainty is still the dependence on the renormalization scale in the matching

coefficients of eq. (A.43). At higher cuts the mb dependence and the details of the quark

distribution function, BS(u) and the associated power corrections become dominant. For

the higher moments of the photon energy these ingredients become important already at

milder cuts. We therefore discuss these issues in more detail in the next section.

4.3 Spectral moments for Eγ > E0

Spectral moments defined over a restricted energy range Eγ > E0 [17], have proven to be

a useful tool for comparison of the spectrum between experimental data and theory [14,

12, 13]. This comparison is important for a few reasons. First, it allows to test the

extrapolation of B̄ −→ Xsγ from the region of measurement. Second, more generally, it

allows to test our understanding of the Sudakov region, which is a critical ingredient in

extracting |Vub| from semileptonic decays, B̄ −→ Xulν̄. It that case the extrapolation from

the region of measurement into the whole of phase space is very large, a factor of ∼ 2 − 5

depending on the specific kinematic cuts applied, and thus the sensitivity to the details of

the spectrum in the peak region is significant.

Following ref. [17] we consider here the average photon energy with a cut, namely

〈Eγ〉Eγ>E0
≡

∫

E0

dEγ
dΓ(Eγ)

dEγ
Eγ

∫

E0

dEγ
dΓ(Eγ)

dEγ

(4.10)

and higher truncated moments, defined by:

〈(
〈Eγ〉Eγ>E0

− Eγ

)n〉
Eγ>E0

≡

∫

E0

dEγ
dΓ(Eγ)

dEγ

(
〈Eγ〉Eγ>E0

− Eγ

)n

∫

E0

dEγ
dΓ(Eγ)

dEγ

. (4.11)
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Figure 9: The region in the u = 3/2 renormalon residue and power corrections plain, (C3/2, f
PV),

where the spectra conforms with the physical support properties. For example, in the most restricted

region, marked by circles, both the requirement on the BF CutA(C3/2, f
PV) < 0.01 and the one on

the average energy CutB(C3/2, f
PV) < 0.01 are satisfied (CutA and CutB are defined in eq. (4.13)).

It is obvious that the higher the cut, or the moment n considered, the higher is the

sensitivity to the fine details of the peak and, eventually, the endpoint region, Eγ ' MB/2.

In contrast to the BF with mild cuts, where one can obtain a purely perturbative prediction,

when considering the moments or high cuts one must take account of power corrections. In

DGE, this can be judged by the sensitivity of the Borel integral to values of u away from

the origin. In our parametrization of the soft function BS(u) (see eqs. (3.27) to (3.29) in

ref. [52]) this directly depends on C3/2. Since BS(u) at u >∼ 3/2 is not known, and since

the significance of power corrections in (2.10) directly depends on what it is assumed to

be, it becomes obvious that these two aspects must be addressed together, and that an

additional constraint would be needed. Here we propose to use the support properties,

namely the vanishing of the spectrum for Eγ > MB/2 for this purpose.

In taking power corrections in the peak region into account one has to find a com-

promise that allows a sufficiently accurate description of the spectrum and yet involves a

sufficiently small number of non-perturbative parameters. In general, starting with pertur-

bation theory, the closer the region of interest to the endpoint, the harder it is to find such

a compromise. Here we wish to explore the relation between C3/2 in the parametrization

of BS(u) entering eq. (2.14), the power corrections and the support properties. As a first
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Figure 10: Left: The prediction for MB−〈Eγ〉Eγ>E0
as a function of E0 compared with data from

Belle and BaBar. The green band indicates the uncertainty, and is obtained by adding contributions

in quadrature. The default choice of parameters, corresponding to µ = mPV

b in eq. (A.43) and

(C3/2, f
PV) = (1, 0) in eqs. (2.9) and (4.12), is shown as a full (black) line. The dotted line is

obtained by choosing µ = mPV

b /2. A slightly better description of the data is obtained upon

choosing µ = mPV

b /2 and (C3/2, f
PV) = (6.2, .3). This result is indicated by the (red) dot-dashed

line. These choices all have equal theoretical justification. Right: The breakdown on sources for

the uncertainty.

exploration of this issue, it is reasonable to consider a single non-perturbative parameter.

On the other hand, since we would like to explore extreme cuts — the support properties

— there is no justification in using only the leading power term, k = 3 in eq. (2.10). For

Eγ ' MB/2 such hierarchy does not exist. In order to use eq. (2.10) we therefore take a

sum of all renormalon ambiguities, all weighted by one non-perturbative parameter, fPV:

S̃ud
(J)

(N,mb)

∣∣∣∣
PV

−→ S̃ud
(J)

(N,mb)

∣∣∣∣
PV

×

exp

{
CF

β0
π fPV

∞∑

k=3

T (k/2)

k/2
BS(k/2)

(
Λ

mb

)k

R(J)(N, k/2)

}
,

(4.12)

where fPV is expected to be of order 1. eq. (4.12) includes a sum of all powers of (NΛ/mb)
k

with k ≥ 3, which a priori (depending on BS(k/2)) may all be relevant for Eγ ' MB/2.

Going over to milder cuts, where only the leading power is relevant, fPV can be identified

with fPV

3 in (2.10).

We already know from previous studies that very large values of C3/2 or of power

corrections cannot be accommodated with the support properties, Eγ < MB/2. Here

we would like to translate this into a concrete constraint. To this end we require that

neither the spectrum nor the first moment extend too far beyond the physical endpoint.

Considering all possible values of C3/2 and fPV, we implement this requirement using the
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Figure 11: Left: The prediction for the second central moment
〈(

〈Eγ〉Eγ>E0
− Eγ

)2
〉

Eγ>E0

as

a function of E0 compared with data from Belle and BaBar. The band indicating the uncertainty

and the various lines are obtained with the same choice of parameters as the corresponding ones in

figure 10. Right: The breakdown on sources for the uncertainty.

following cuts:

CutA(C3/2, f
PV) =

∣∣∣∣
Γ(B̄ −→ Xsγ,Eγ > MB/2)

Γ(B̄ −→ Xsγ,Eγ > MB/20)

∣∣∣∣

CutB(C3/2, f
PV) =

∣∣∣∣1 −
〈Eγ〉Eγ>MB/2

MB/2

∣∣∣∣ .

(4.13)

In figure 9 we have indicated by plus’s the region in the plane of (C3/2, f
PV) for which

the spectra conform to CutA(C3/2, f
PV) < 0.01 with the remaining parameters at their

default value. We have also indicated by circles (asterisks) the region for which the spectra

also obey CutB(C3/2, f
PV) < 0.01 (0.02).

We observe that there is a reasonably large range in the (C3/2, f
PV) parameter space

that conforms with the physical support properties. The details depend on how stringent

the constrains on (4.13) are. What is general, however, is that acceptable spectra have

power corrections that are typically of the order of the renormalon ambiguity: as shown in

figure 9 fPV <∼ 1, except at very small C3/2 where the power correction essentially has no

effect.

Having excluded too large contributions to the Sudakov factor from large u values

and too large power corrections based on the support criterion, we still have a variety of

spectra whose properties, i.e. the first few cut moments, are different. In the analysis of

the theoretical uncertainty in this paper we allow (C3/2, f
PV) to vary within the region of

CutA, CutB < 0.01. It is reassuring that the power corrections satisfying these require-

ments are also of the order of the renormalon ambiguity, or smaller. Note, on the other

hand, that for most of the range in C3/2 vanishing power corrections are excluded as well.

In figures 10 to 12 we show the cut dependence of the first three central moments,

MB −〈Eγ〉Eγ>E0
where the average energy is defined in (4.10), the variance n = 2 in (4.11)

and the third moment n = 3 in (4.11), respectively. The bands in the figures on the left
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Figure 12: Left: The prediction for the third central moment
〈(

〈Eγ〉Eγ>E0
− Eγ

)3
〉

Eγ>E0

as

a function of E0. The band indicating the uncertainty and the various lines are obtained with

the same choice of parameters as the corresponding ones in figure 10. Right: The breakdown on

sources for the uncertainty. This plot is terminated when the prediction for the third moment

becomes consistent with zero.

hand side represent the estimated theoretical uncertainty obtained by the same procedure

used in section 4.2. The various contributions to the uncertainty are presented in the

plots on the right. As expected, the uncertainty associated with the behavior of the quark

distribution function, BS(u) at u ∼ 3/2, and the corresponding power corrections increases

as the cut is raised. It also gets more significant of course for higher moments.

In the average energy and variance figures, figures 10 and 11, we also present experi-

mental data [14, 12, 13] by Belle and two analysis by BaBar. Fits to data, with simultaneous

variation of mb, C3/2 and fPV, can be very useful for the measurement of the bottom mass

and for testing the theoretical description of the peak region. We do not perform any such

fits14 here, and the comparison with data is merely qualitative.

The default line (full line) in figures 10 and 11, corresponding to the C3/2 = 1 choice

made in refs. [17, 52] with no power corrections fPV = 0, seems to agree very well with

the Belle data, and not as good with the BaBar data that often has smaller errors. In

particular, in the average energy plot, the theoretical curve lies quite significantly above

the BaBar data point at E0 = 2.26 GeV; in the variance plot it is about two sigma below

the BaBar data points at E0 < 2.1 GeV. When making this comparison one should take

great care in interpreting theoretical uncertainties, which do not reflect probability. For

example, there is absolutely no theoretical preference to the choice C3/2 = 1 with fPV = 0

as compared, for example to C3/2 = 6.2 with fPV = 0.3. Similarly, there is no preference

for choosing the renormalization scale in (A.43) as µ = mb (our default) as compared to

µ = mb/2. Short of further calculations, these choices remain arbitrary to a large extent.

We note that with these different choices there is good agreement with BaBar data. This

is demonstrated by the dot-dashed lines in figures 10 and 11.

14Fits should of course take into account the separation between statistical and systematic experimental

errors (which are summed here in quadrature) as well as correlations between the data points.

– 37 –



J
H
E
P
0
1
(
2
0
0
7
)
0
2
9

5. Conclusions

We presented here a calculation of the B̄ −→ Xsγ branching fraction, as well as the first

few spectral moments as a function of a cut on the photon energy, using the framework

of Dressed Gluon Exponentiation. Building on our previous work [17, 52], and on recent

progress in fixed–order calculations [44, 45, 39, 42, 49], we now have accurate predictions

for these observables and good understanding of the theoretical uncertainties and their

dependence on the cut.

We made progress on several different aspects of the calculation:

• In matching the resummed spectrum into the fixed–order expansion (appendix A),

we made full use of the available NNLO results of the G77 spectrum [39, 42]. In

this sector we therefore have a complete NNLO with NNLL accuracy. As shown

in figure 1 the DGE spectrum does not vary much in going from NLO to NNLO,

indicating that all important higher–order corrections are indeed resummed. The

largest relative variation is along the tail of the distribution where NNLO corrections

in the matching coefficient are important (see also figure 3).

• We developed a method to perform Sudakov resummation without violating the an-

alytic structure of the perturbative series in moment space, and therefore, without

generating artifacts away from the Sudakov region. Using the Sudakov factor (2.14)

the resummed spectrum can therefore be used down to small Eγ where it matches

into the fixed–order result (See figure 2).

• Matrix elements of other operators in the effective Weak Hamiltonian and their in-

terference with O7 are known in full to O(αs) only. However, we also know that

independently of the nature of the short–distance interaction, all important contri-

butions in the peak region, i.e. ones that do not vanish as O(1/N), necessarily involve

the same Sudakov factor. Here we computed the spectra of individual matrix ele-

ments Gij assuming the same Sudakov factor multiplied by O(αs) hard coefficient

functions that depend on the operators. The resulting effect on the spectrum is shown

in figure 5.

• We performed a first numerical study of the relation between renormalon contribu-

tions to the quark distribution function, power corrections, and support properties.

To this end we used the parametrization of the soft anomalous dimension function

BS(u) proposed in ref. [52] (see eqs. (3.27) to (3.29) there), which is consistent with

all available constraints for u → 0, and at u = 1/2 and u = 1; it includes a sin-

gle parameter C3/2 that controls the u >∼ 3/2 region, which is not well constrained

theoretically. We also used a simple formula with a single parameter for the cor-

responding power corrections, eq. (4.12), which nevertheless takes into account all

powers of (NΛ/mb)
k with k ≥ 3. Under these assumptions we showed that there

exists a range in the parameter space where the computed spectrum conforms with

the physical support properties. We observed that the size of the power corrections

is of the order of the renormalon ambiguity, as expected on general grounds.
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• We proposed a new method to evaluate the total B̄ −→ Xsγ width that utilizes

the semileptonic width, where the leading renormalon ambiguity has been explicitly

dealt with using Borel summation [52]. Our new method avoids using any addi-

tional mass scheme. The result for the total BF is summarized in eq. (4.9). It is

consistent with previous determinations [7, 8]. Unfortunately, despite having partial

NNLO information on the matrix elements [44, 45, 49], the theoretical uncertainty

is still large, ±13.7%. We observed large cancellations between G77 and G27 contri-

butions, which vary depending on the renormalization scale. Therefore, significant

improvement is expected upon completion of the NNLO calculation of G27.

• Finally, we devised a method to compute the BF with a cut on the photon energy, by

combining the resummed calculation of the spectrum of individual matrix elements

with the proper weight, given by the fixed–order calculation of the total BF, eq. (4.8).

This framework facilitates the analysis of theoretical uncertainties associated with

different ingredients, which are known at different orders, and have different rôle

depending on how stringent the cut is.

It is of theoretical as well as practical interest to understand the behavior of higher–

order corrections. The overwhelming dominance of running–coupling corrections at O(αs
2),

and the very late settling of the leading logarithmic behavior at large x [39], might be inter-

preted as a signal that Sudakov resummation is irrelevant. In order to address the relative

significance of higher–order corrections of different origin we presented in section 2.3 the

all–order resummation of the G77 spectrum in the large–β0 limit, based on the calculation

of ref. [18]. When working directly in momentum space (x space) there are no renormalon

ambiguities in the real–emission result, but there are convergence constraints on the Borel

integral. Consequently, the Borel sum does not exist for Eγ >∼ 2 GeV. As shown in figure 1

and 4, the large–β0 sum does not give a viable description of the spectrum in the peak

region. This stands in sharp contrast with DGE, which through real–virtual cancellation

and exponentiation in moments space, accounts for multiple soft and collinear radiation.

Thus, despite the late settling of the leading logarithmic behavior at large x up to O(αs
2),

such logarithms are important at higher orders. It is the combination of soft gluon resum-

mation with the resummation of running–coupling corrections that open the way for the

quantitative description of inclusive decay spectra.

Finally, the results of the present paper can help in various ways in understanding

and using the B factory B̄ −→ Xsγ data. In order to make comparison between the BF

measurements with a given kinematic cut, Eγ > E0, and the theoretical result of eq. (4.9)

we provided in table 2 estimates of the extrapolation factor as a function of E0. This

information, as well as all other details of the spectrum and the moments computed here,

can be obtained using a c++ program that is made publicly available15. Beyond the issue

of the BF itself, combining the theoretical calculations presented here with B̄ −→ Xsγ data

is extremely valuable for other aspects of flavor physics: it allows a precise determination

of the the b–quark mass, as well as testing and improving the description of inclusive decay

15http://www.hep.phy.cam.ac.uk/∼andersen/BDK/
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spectra in the Sudakov region by quantifying Fermi–motion corrections. This is particularly

important for the determination of |Vub| from the B factory measurements of charmless

semileptonic decays [74, 15].

Note Added. Upon completion of this paper there appeared two new papers addressing

the calculation of the total BF [75, 76]. In particular, Ref. [76] estimates the O(α2
s) contri-

bution of the four–quark operator matrix elements using extrapolation from large mc. This

goes beyond the large–β0 results of Ref. [49] that we used here. The final result for the

total BF in [75, 76] is consistent with ours, but has a lower central value and a significantly

smaller uncertainty from varying the renormalization scale. The reasons for that are not

yet clear.

A. NNLO matching of the resummed G77 spectrum

A.1 Expansion of the Sudakov exponent and a basic NNLO matching formula

Let us begin by recalling the O(αs
2) result for the Sudakov exponent [17]. Expanding

eq. (2.6) to this order one obtains eq. (2.5) with

E1(N) = −a1

2

(
S2

1(N) − S2(N)

)
− (b1 − d1)S1(N) (A.1)

E2(N) =

[
− a1

2
S3

1(N) +

(
d1 −

1

2
b1 −

1

2
a2

)
S2

1(N) +

(
d2 − b2 +

3

2
a1 S2(N)

)
S1(N)

+

(
−d1 +

1

2
b1 +

1

2
a2

)
S2(N) − 1

2
a1 S3(N)

]
β0

where we define16

Sk(N) ≡ (−1)k−1 (k − 1)!

N−1∑

l=1

1

lk
= Ψk−1(N) − Ψk−1(1), (A.2)

so S1(N) = Ψ(N) + γE, S2(N) = Ψ1(N) − π2

6
,

S3(N) = Ψ2(N) + 2ζ3, S4(N) = Ψ3(N) − π4

15
.

and where the coefficients17 of the Sudakov anomalous dimensions, defined in the MS

16Note the different normalization compared to the standard harmonic sum.
17For the precise relation with BS(u) and BJ (u) see ref. [17]. Note that the notation used there in eqs.

(2.5) through (2.7) is: An = CF βn−1
0 an etc.
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scheme, are [43, 53, 17, 39, 54, 55]:

a1 = 1, a2 =
5

3
+

(
1

3
− 1

12
π2

)
CA

β0
,

a3 = −1

3
+

1

β0

[(
55

16
− 3ζ3

)
CF +

(
253

72
− 5

18
π2 +

7

2
ζ3

)
CA

]

+
1

β2
0

[(
− 7

18
− 1

18
π2 − 11

4
ζ3 +

11

720
π4

)
C2

A +

(
−605

192
+

11

4
ζ3

)
CACF

]
,

b1 = −3

4
, b2 = −247

72
+

1

6
π2 +

1

β0

[(
− 3

32
− 3

2
ζ3 +

1

8
π2

)
CF +

(
− 73

144
+

5

2
ζ3

)
CA

]
,

d1 = 1, d2 =
1

9
+

CA

β0

[
9

4
ζ3 −

π2

12
− 11

18

]
.

(A.3)

In the following we will compute the matching coefficient functions H(αs(mb), N) and

∆R(αs(mb), x) in eq. (2.4) to O(αs
2) based on the known NNLO expansion [39] and the

expansion of the exponent in eq. (2.5) with (A.1).

To this end we will need the color decomposition of the NNLO result in eq. (2.1)

(note that an overall factor of CF was extracted there). The NLO coefficients entering

R(αs(mb), x) and V (αs(mb)) are r1(x), which is is given explicitly eq. (B.4) below, and

k1 = −31/12. The NNLO ones will be decomposed as follows:

k2 = Nfk
Nf

2 + CF kCF
2 + CAkCA

2 ;

rsing.

2 (x) = Nfr
Nf ,sing.

2 (x) + CF rCF,sing.

2 (x) + CArCA,sing.

2 (x);

rreg.

2 (x) = Nfr
Nf ,reg.
2 (x) + CF rCF,reg.

2 (x) + CArCA,reg.
2 (x).

(A.4)

The explicit expression for r
Nf ,reg.
2 (x) = −1

6rβ0,reg.
2 (x) is given in eq. (B.5) while the expres-

sions for the other terms, corresponding to the C2
F and CF CA color factors, can be found

in eqs. (7) and (8) in ref. [39], respectively. Below we quote only their singular parts,

rsing.

2 (x), which were derived already in [17]. The regular parts, rreg.

2 (x), are used here but

owing to their length we do not write their explicit expressions here; these can read off eqs.

(7) and (8) in ref. [39] by removing the δ and the plus–distribution terms. Using this color

decomposition one finds the constants kn by integrating rreg.
n (x) according to eq. (2.2) [39]:

k
Nf

2 =
49

48
− ζ3

3
+

π2

16
= 1.237; kCA

2 = −4.795; kCF
2 = 1.216. (A.5)

Having set the notation let us consider now the partially–integrated G77 matrix element

at O(αs
2), as obtained from eq. (2.3) with (2.1):

G77(E0,mb)

G77(0,mb)
= 1 + CF

[
k1

αs(mb)

π
+ k2

(
αs(mb)

π

)2

+ · · ·
]

(A.6)

+ CF

∫ 1

x0=2E0/mb

dx

[
rsing.

1 (x)
αs(mb)

π
+ rsing.

2 (x)

(
αs(mb)

π

)2

+ · · ·
]

+
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+ CF

∫ 1

x0=2E0/mb

dx

(
rreg.

1 (x)
αs(mb)

π
+ rreg.

2 (x)

(
αs(mb)

π

)2

+ · · ·
)

.

Defining the moments of rsing.
n (x) according to eq. (1.2),

Rsing.

n (N) ≡
∫ 1

0
dxxN−1

[
rsing.

n (x)
]
+

=

∫ 1

0
dx

(
xN−1 − 1

)
rsing.

n (x), (A.7)

we find:

∫ 1

x0=2E0/mb

dx [rsing.

n (x)]+ =
1

2πi

∫ c+i∞

c−i∞

dN

N − 1

(
2E0

mb

)1−N

Rsing.

n (N) (A.8)

Thus, we can express eq. (A.6) as an inverse–Mellin transform:

G77(E0,mb)

G77(0,mb)
=

1

2πi

∫ c+i∞

c−i∞

dN

N − 1

(
2E0

mb

)1−N
{

1 + CF

[
k1

αs(mb)

π
+ k2

(
αs(mb)

π

)2

+ · · ·
]

+ CF

[
Rsing.

1 (N)
αs(mb)

π
+ Rsing.

2 (N)

(
αs(mb)

π

)2

+ · · ·
]}

(A.9)

+ CF

∫ 1

x0=2E0/mb

dx

(
rreg.

1 (x)
αs(mb)

π
+ rreg.

2 (x)

(
αs(mb)

π

)2

+ · · ·
)

Next, we can incorporate the resummation of Sudakov logarithms by rewriting

eq. (A.9) in terms of the Sudakov factor of eq. (2.6) according to the general form in

eq. (2.4):

[
G77(E0,mb)

G77(0,mb)

]

Resummed

=
1

2πi

∫ c+i∞

c−i∞

dN

N − 1

(
2E0

mb

)1−N

Sud(N,mb) (A.10)

× exp

[
CF k1

αs(mb)

π
+ CF

(
k̄2 − CF k2

1/2
) (

αs(mb)

π

)2

+ · · ·
]

+CF

∫ 1

x0=2E0/mb

dx

(
rreg.

1 (x)
αs(mb)

π
+ r̄reg.

2 (x)

(
αs(mb)

π

)2

+ · · ·
)

.

Note that r̄reg.

2 (x) introduced here is different from rreg.

2 (x) used in eq. (A.9) since the

exponentiation generates some additional integrable terms (see below). Such terms need

to be subtracted18 of rreg.

2 (x) to avoid double counting. Of course, k̄2 is defined accordingly,

k̄n ≡ −
∫ 1
0 dx r̄reg.

n (x).

Upon expansion, this formula together with the coefficients of the Sudakov exponent

was used to predict [17] the terms that diverge at N −→ ∞ at O(α2
s), see appendix A

there. Explicit calculations later confirmed these results [39, 42]. Expanding eq. (A.10)

using eq. (2.5) one gets, under the inverse–Mellin integral:

1 + CF

[
(
Rsing.

1 (N) + k1

) αs(mb)

π
+

(
R̄sing.

2 (N) + k̄2

)(
αs(mb)

π

)2

+ · · ·
]

, (A.11)

18This is done in eq. (A.19) below.
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where

Rsing.

1 (N) = E1(N), R̄sing.

2 (N) =

(
1

2
E2

1(N) + k1E1(N)

)
CF + E2(N). (A.12)

eq. (A.11) should be compared with the contents of the curly brackets in eq. (A.9). The

O(αs) terms are clearly identical, but the O(α2
s) terms are not. They are equal as far as

the terms that diverge at N −→ ∞ are concerned, yet they differ by O(1/N) corrections

proportional to C2
F that are generated by exponentiating E1(N). To account for this

difference we have introduced the bar notation. Specifically R̄sing.

2 (N) is different from

the originally defined Rsing.

2 (N) of eq. (A.7) by some additional terms that are finite at

N −→ ∞:

R̄sing.

2 (N) = Rsing.

2 (N) +

∫ 1

0
dx

(
xN−1 − 1

)
rsing., integrable

2 (x). (A.13)

The constant at N −→ ∞ is retained at its computed value by requiring R̄sing.

2 (N) + k̄2 =

Rsing.

2 (N) + k2 + O(1/N), see eq. (A.20) below. In the remainder of this section we derive

explicit expressions for the barred matching coefficients in eq. (A.10).

Starting with eq. (A.12) and using eq. (A.1) we get the following explicit expressions:

Rsing.

1 (N) = −1

2

(
S2

1(N) − S2(N)

)
− (b1 − d1)S1(N)

R̄sing.

2 (N) = CF

[
1

8
S4

1(N) +
1

2
(b1 − d1) S3

1(N) +

(
−1

2
k1 −

1

4
S2(N) +

1

2
(d1 − b1)

2

)
S2

1(N)

+ (d1 − b1)

(
1

2
S2(N) + k1

)
S1(N) +

1

8
S2

2(N) +
1

2
k1S2

]

+ β0

[
− 1

2
S3

1(N) +

(
d1 −

1

2
b1 −

1

2
a2

)
S2

1(N) +

(
3

2
S2(N) + d2 − b2

)
S1(N)

+

(
−d1 +

1

2
b1 +

1

2
a2

)
S2(N) − 1

2
S3(N)

]

(A.14)

where we substituted a1 = 1; other coefficients can be read off eq. (A.3). The additional

terms contained in R̄sing.

2 (N) but not in Rsing.

2 (N), (finite terms at N −→ ∞) are:

∫ 1

0
dx

(
xN−1 − 1

)
rsing., integrable

2 (x) = CF

[
− S2(N)

(
π2

12
− 1

2
(d1 − b1)

2

)

+ (b1 − d1)

((
S2(N) +

π2

6

)
S1(N) − 1

2
S3(N)

)

− 1

2

(
π2

6

(
S2(N) − S2

1(N)
)
− S2

1(N)S2(N) + (S3(N) − 2ζ3) S1(N) − 1

3
S4(N) + S2

2(N)

)

+
1

2

(
1

2
S2

2(N) − 1

12
S4(N) +

π2

6
S2(N)

) ]

(A.15)
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In x space this corresponds to

rsing.

1 (x) = − ln(1 − x)

1 − x
+ (b1 − d1)

1

1 − x

r̄sing.

2 (x) = rsing., integrable

2 (x) + rsing.

2 (x)

(A.16)

where the original terms, appearing under the plus prescription in eq. (2.1), are19

rsing.

2 (x) = CF

[(
ζ3 − k1(d1 − b1) +

π2

6
(b1 − d1)

)
1

1 − x

+

(
(d1 − b1)

2 − π2

6
− k1

)
ln(1 − x)

1 − x
+

3

2
(d1 − b1)

ln2(1 − x)

1 − x
+

1

2

ln3(1 − x)

1 − x

]

+ β0

[
(b2 − d2)

1

1 − x
+ (2d1 − b1 − a2)

ln(1 − x)

1 − x
+

3

2

ln2(1 − x)

1 − x

]

(A.17)

while the additional, integrable terms that arise from C2
F E2

1(N) are:

rsing., integrable

2 (x) = CF

[(
π2

12
− 1

2
(d1 − b1)

2

)
ln(x)

1 − x
+ (b1 − d1)

ln(x) ln(1 − x)

1 − x

− 1

2

ln(x) ln2(1 − x)

1 − x
+

1

2

1

1 − x

(
− ln(x)

(
Li2(x) +

π2

6

)
+ 2Li3(x) − 2ζ3

)]
.

(A.18)

It is now straightforward to obtain the modified (barred) rreg.

2 (x) that enters the match-

ing formula of eq. (A.10):

r̄reg.

2 (x) = rreg.

2 (x) − rsing., integrable

2 (x). (A.19)

Note that only the C2
F term is modified. Finally, the corresponding change in k2 can be

easily determined by computing

k̄2 − k2 =

∫ 1

0
dx rsing., integrable

2 (x) = − lim
N−→∞

[
R̄sing.

2 (N) − Rsing.

2 (N)
]

=

(
π4

720
+

49

192
π2 − 7

4
ζ3

)
CF = 0.550496CF .

(A.20)

Using eq. (A.5) we therefore find kCF
2 = 1.7662, so

k̄2 = −4.795CA + 1.237Nf + 1.7662CF . (A.21)

A.2 Including more in moment space

One advantage of the DGE, which is tightly connected to the fact that the calculation

is done in moment space, is that the resummed spectrum smoothly extends beyond the

19These terms are the same as in eq. (A.4) in [17], as they must be.
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perturbative endpoint x = 1 and tends to zero at x = 1 + O(Λ/mb), even in the absence

of power corrections.

For the differential spectrum to be smooth at x = 1, not just integrable, one must take

into account in moment space not only terms that diverge (or are finite) for N −→ ∞, but

also O(1/N) corrections, corresponding in particular to powers of ln(1 − x). In the basic

matching formula of eq. (A.10) these correction are still part of rreg.
n (x). In the following we

rearrange the split between moment space and x space to incorporate all the terms that are

finite for x −→ 1 in moment space, leaving only subleading terms, that vanish at x −→ 1

in x space. In addition we include in moments space all running–coupling, O(β0α
2
s) effects.

One way to ensure this is, of course, full moment–space matching. One defines:

R̄reg.

n (N) ≡
∫ 1

0
dx

(
xN−1 − 1

)
r̄reg.

n (x) =

∫ 1

0
dxxN−1r̄reg.

n (x) + k̄n. (A.22)

and then

G77(E0,mb)

G77(0,mb)
=

1

2πi

∫ c+i∞

c−i∞

dN

N − 1

(
2E0

mb

)1−N

Sud(N,mb) × exp

{
CF Rreg.

1 (N)
αs(mb)

π

+ CF

[
R̄reg.

2 (N) − CF

(
1

2
(Rreg.

1 (N))2 + (Rreg.

1 (N) − k1)E1(N)

)](
αs(mb)

π

)2

+ · · ·
}

.

(A.23)

Here we choose to implement full moment–space matching at NLO while splitting the

NNLO corrections as follows:

r̄reg.

n (x) = r̄reg., leading

n (x) + r̄reg., subleading

n (x) (A.24)

where r̄reg., subleading
n (x) vanishes as (1 − x) at x −→ 1 (up to logarithms) and

R̄reg., leading

n (N) =

∫ 1

0
dx r̄reg., leading

n (x)
(
xN−1 − 1

)
−

∫ 1

0
dx r̄reg., subleading

n (x)

= k̄n +

∫ 1

0
dx r̄reg., leading

n (x)xN−1 (A.25)

such that at N −→ ∞: R̄reg., leading
n (N) −→ k̄n, while at finite N R̄reg., leading

n (N) contains all

the terms that fall as 1/N (including 1/N times a power of ln N). We shall not make this

split for rreg.

1 nor for the β0 contribution to r̄reg.

2 (the so-called BLM term) — these will be

fully contained in the moment–space expression.

For the leading terms in r̄reg.

2 at x −→ 1, eq. (A.24) we find:

r̄
Nf , reg., leading

2 (x) = − 7

24
− π2

36
+

13

36
ln(1 − x) − 1

4
ln2(1 − x) (A.26)

r̄CF , reg., leading

2 (x) =
17

72
π2 − 9

4
ζ3 −

379

96
+

(
− 5

12
−π2

4

)
ln(1 − x)+ln2(1 − x)+

1

2
ln3(1 − x)

r̄CA, reg., leading

2 (x) =
9

8
ζ3 +

3

4
− π2

36
+

(
−22

9
+

π2

8

)
ln(1 − x) +

11

8
ln2(1 − x).
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In moment space, the coefficients of the different color factors of R̄reg., leading
n (N) read:

R̄
Nf , reg., leading

2 (N) = k̄
Nf

2 +

(
− 7

24
− π2

36

)
µ0(N) +

13

36
µ1(N) − 1

4
µ2(N) (A.27)

R̄CF , reg., leading

2 (N) = k̄CF
2 +

(
17

72
π2 − 9

4
ζ3 −

379

96

)
µ0(N) +

(
− 5

12
− π2

4

)
µ1(N)

+ µ2(N) +
1

2
µ3(N)

R̄CA, reg., leading

2 (N) = k̄CA
2 +

(
9

8
ζ3 +

3

4
− π2

36

)
µ0(N) +

(
−22

9
+

π2

8

)
µ1(N) +

11

8
µ2(N),

µj(N) ≡
∫ 1
0 dxxN−1 lnj(1−x), e.g. µ0(N) = 1/N , µ1(N) = −(Ψ(N)+ γE)/N − 1/N2, etc.

Making this split, and shifting the renormalization scale of the coupling in the matching

coefficient to an arbitrary scale µ, we obtain:

[
G77(E0,mb)

G77(0,mb)

]

Resummed

=
1

2πi

∫ c+i∞

c−i∞

dN

N − 1

(
2E0

mb

)1−N

Sud(N,mb) ×

exp

{
CF Rreg.

1 (N)
αs(µ)

π
+ CF

[
β0 ln

(
µ2

m2
b

)
Rreg.

1 (N) + R̄reg., leading

2 (N)

− CF

(
1

2
(Rreg.

1 (N))2 + (Rreg.

1 (N) − k1) E1(N)

) ](
αs(µ)

π

)2

+ · · ·
}

+ CF

∫ 1

x0=2E0/mb

dx r̄reg., subleading

2 (x)

(
αs(µ)

π

)2

+ · · · . (A.28)

where the explicit expression for Rreg.

1 (N) is given in eq. (B.14), β0 = 11
12CA − 1

6Nf and

R̄reg. leading

2 (N) ≡ −6β0R̄
Nf ,reg.
2 (N)︸ ︷︷ ︸

BLM

(A.29)

+ CF R̄CF , reg., leading

2 (N) + CA

(
R̄CA, reg., leading

2 (N) +
11

2
R̄

Nf , reg., leading

2 (N)

)

︸ ︷︷ ︸
non−BLM

,

where R̄
Nf ,reg.
2 (N) is given explicitly in eq. (B.16), while the leading terms of the non-BLM

color factors are given in eq. (A.27). As announced above, terms that are excluded from

eq. (A.29) are O(1/N2) and do not involve running–coupling effects. These residual terms

are included in x space through

r̄reg., subleading

2 (x) ≡ CF r̄CF , reg., subleading

2 (x)

+ CA

(
r̄CA, reg., subleading

2 (x) +
11

2
r̄
Nf , reg., subleading

2 (x)

)
. (A.30)

As usual, the renormalization–scale dependence in eq. (A.28) can serve as a measure of

subleading perturbative corrections at O(α3
s) and beyond. In the numerical analysis we

will vary µ between mb/2 and mb as one of several means to estimate the theoretical

uncertainty.
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A.3 NNLO matching under constraints on the analytic structure (J 6= 0)

Let us describe now the matching procedure with the Sudakov factor of eq. (2.14). The

matching coefficients, just like the exponent, are constructed under a constraint on the

analytic structure in moment space: no poles should appear for N > −J , and so the small–x

asymptotic behavior would coincide with that of the fixed–order result, dΓ/dx ∼ xJ .

The expansion of the J–modified Sudakov exponent, eq. (2.14), takes the form:

S̃ud
(J)

(N,mb) = exp

{
CF

[
Ẽ1(N)

αs(mb)

π
+ Ẽ2(N)

(
αs(mb)

π

)2

+ · · ·
]}

. (A.31)

with

Ẽn(N) = En(N + J) − En(J + 1) (A.32)

where En for n = 1, 2 are given explicitly in eq. (A.1).

We now proceed to match eq. (2.14) into the NNLO result. First, let us write a basic

matching formula, in analogy with eq. (A.10),

G77(E0,mb)

G77(0,mb)

∣∣∣∣
Resummed

=
1

2πi

∫ c+i∞

c−i∞

dN

N − 1

(
2E0

mb

)1−N

S̃ud
(J)

(N,mb) (A.33)

× exp

{
CF k̃1

αs(mb)

π
+ CF

(
k̃2 − CF k̃2

1/2
) (

αs(mb)

π

)2

+ · · ·
}

+CF

∫ 1

x0=2E0/mb

dx

(
r̃reg.

1 (x)
αs(mb)

π
+ r̃reg.

2 (x)

(
αs(mb)

π

)2

+ · · ·
)

.

Defining R̃sing.
n (N) as the coefficients arising from the expansion of the Sudakov factor times

the matching coefficient in eq. (A.33):

R̃sing.

1 (N) = Ẽ1(N), R̃sing.

2 (N) =

(
1

2
Ẽ2

1(N) + k̃1Ẽ1(N)

)
CF + Ẽ2(N) (A.34)

we can compute the modified regular parts as follows:

r̃reg.

n (x) = rreg.

n (x) − ∆rsing.

n (x) (A.35)

where ∆rsing.
n (x) ≡ r̃sing.

n (x) − rsing.
n (x) and where

R̃sing.

n (N) =

∫ 1

0
dx

(
xN−1 − 1

)
r̃sing.

n (x), (A.36)

similarly to eq. (A.7). It is straightforward to compute k̃1:

k̃1 − k1 =

∫ 1

0
dx∆rsing.

1 (x) = − lim
N−→∞

[
R̃sing.

1 (N) − Rsing.

1 (N)
]

= −
(

1

2
S1

2(1 + J) + (b1 − d1)S1(1 + J) − 1

2
S2(1 + J)

)
CF

(A.37)
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Because of the structure of Ẽn in eq. (A.32) one can express R̃sing.
n (N) as20

R̃sing.

n (N) = Fn(N + J, J) − Fn(1 + J, J) ≡
∫ 1

0
dxxN+J−1 [fn,J(x)]+ −

∫ 1

0
dxxJ [fn,J(x)]+

=

∫ 1

0
dx

(
xN−1 − 1

)
xJfn,J(x).

(A.38)

This means the inverse Mellin transform of R̃sing.
n (N) is readily obtained by multiplying the

inverse Mellin transform of Fn(N,J) by xJ under the plus prescription. Moreover, since

for J = 0 eq. (A.38) must coincide with eq. (A.12) we have:

F1(N, 0) = Rsing.

1 (N); F2(N, 0) = R̄sing.

2 (N), (A.39)

and therefore eq. (A.38) implies21

R̃sing.

1 (N) = Rsing.

1 (N +J)−Rsing.

1 (1+J); R̃sing.

2 (N) = R̄sing.

2 (N +J)−R̄sing.

2 (1+J) (A.40)

where the explicit expressions of the functions on the r.h.s. are given in eq. (A.14) and

∆rsing.

1 (x) = (xJ − 1) rsing.

1 (x)

∆rsing.

2 (x) = xJ r̄sing.

2 (x) − rsing.

2 (x) = xJ rsing., integrable

2 (x) + (xJ − 1) rsing.

2 (x),
(A.41)

where rsing.

1 (x) and rsing.

2 (x) and rsing., integrable

2 (x) are given in Eqs (A.16), (A.17) and (A.18),

respectively. Finally we find k̃2 by

k̃2 − k̄2 =

∫ 1

0
dx∆rsing.

2 (x) = − lim
N−→∞

[
R̃sing.

2 (N) − R̄sing.

2 (N)
]

= CF

[
1

8
S1

4(1 + J) − 1

2
(d1 − b1)S1

3(1 + J)

+

(
1

2
(d1 − b1)

2 − 1

4
S2(1 + J) − k1

2

)
S1

2(1 + J)

+

(
1

2
(d1−b1)S2(1 + J)+(d1−b1)k1

)
S1(1+J)+

1

8
S2

2(1+J)+
1

2
k1 S2(1 + J)

]

+ β0

[
− 1

2
S1(1 + J)3 +

(
d1 −

b1

2
− a2

2

)
S1

2(1 + J)

+

(
3

2
S2(1+J)+d2−b2

)
S1(1+J)+

(
−d1+

b1

2
+

a2

2

)
S2(1 + J)− 1

2
S3(1 + J)

]
,

(A.42)

20As we show below fn,J (x) are in fact J independent upon substituting for k̃1 in terms of k1. They are

given by f1,J (x) = rsing.
1 (x) and f2,J (x) = r̄sing.

2 (x).
21One can explicitly compute eRsing.

1,2 (N) and therefore Fn(N +J, J) using eq. (A.34). It is straightforward

to verify that upon substituting for k̃1 in terms of k1 using eq. (A.37), the dependence of Fn(N + J, J) on

J appears only through N + J and the result coincides with eq. (A.14).
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where we used eq. (A.37) and wrote k̃1 in terms of k1. k̄2 on the l.h.s is given in eq. (A.21).

Having determined all the ingredients in the matching formula eq. (A.33), we can easily

convert it to the preferred form where all the NLO terms and the leading NNLO terms are

evaluated in moment space, in analogy with eq. (A.28):

G77(E0,mb)

G77(0,mb)

∣∣∣∣
Resummed

=
1

2πi

∫ c+i∞

c−i∞

dN

N − 1

(
2E0

mb

)1−N

S̃ud
(J)

(N,mb) ×

exp

{
CF R̃reg.

1 (N)
αs(µ)

π
+ CF

[
β0 ln

(
µ2

m2
b

)
R̃reg.

1 (N) + R̃reg., leading

2 (N)

− CF

(
1

2

(
R̃reg.

1 (N)
)2

+
(
R̃reg.

1 (N) − k̃1

)
Ẽ1(N)

) ](
αs(µ)

π

)2

+ · · ·
}

+ CF

∫ 1

x0=2E0/mb

dx r̃reg., subleading

2 (x)

(
αs(µ)

π

)2

+ · · · , (A.43)

where we used eq. (A.34). Here R̃reg.

1 (N) is

R̃reg.

1 (N) ≡
∫ 1

0
dx(xN−1 − 1)r̃reg.

1 (x) = Rreg.

1 (N) + Rsing.

1 (N) − R̃sing.

1 (N)

= Rreg.

1 (N) −
[
Rsing.

1 (N + J) − Rsing.

1 (1 + J) − Rsing.

1 (N)

] (A.44)

where the second line in based on eq. (A.41), and R̃sing.

1 (N) is given in eq. (A.40). An explicit

expression for the regular part in x space can be obtained using eqs. (A.35) and (A.41):

r̃reg.

2 (x) = rreg.

2 (x) −
(

xJ rsing., integrable

2 (x) + (xJ − 1) rsing.

2 (x)

)
. (A.45)

Finally, R̃reg., leading

2 (N) is defined in analogy with Rreg., leading

2 (N) in eqs. (A.24) and (A.25).

To this end we decompose the regular part:

r̃reg.

2 (x) = r̃reg., leading

2 (x) + r̃reg., subleading

2 (x) (A.46)

such that r̃reg., subleading

2 (x) vanishes as (1 − x) for x −→ 1 and

R̃reg., leading

2 (N) =

∫ 1

0
dx r̃reg., leading

2 (x)
(
xN−1 − 1

)
−

∫ 1

0
dx r̃reg., subleading

2 (x)

= k̃2 +

∫ 1

0
dx r̃reg., leading

2 (x)xN−1. (A.47)

In contrast with r̄reg., leading

2 (x), however, we require that r̃reg., leading

2 (x) — and therefore

also r̃reg., subleading

2 (x) (!) — will behave as xJ at x −→ 0. To compute r̃reg., leading

2 (x) we

therefore first extract xJ out of r̃reg.

2 (x) of eq. (A.45) before expanding near x −→ 1. Using

xJ = 1 − J (1 − x) + O((1 − x)2) and eq. (A.19) we obtain:

r̃reg., leading

2 (x) = xJ
[
r̄reg., leading

2 (x) + J (1 − x) rsing.

2 (x)
]
. (A.48)
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Finally, returning to eq. (A.47) and using eq. (A.25) we obtain:

R̃reg., leading

2 (N) = k̃2 +

∫ 1

0
dx

(
r̄reg., leading

2 (x) + J (1 − x) rsing.

2 (x)

)
xN+J−1 (A.49)

= k̃2 − k̄2 + R̄reg., leading

2 (N + J) + J

∫ 1

0
dx (1 − x) rsing.

2 (x)xN+J−1.

where the explicit expression for R̄reg., leading

2 (N) is given in eq. (A.29) with eq. (A.27).

B. The normalized G77 spectrum in the large–β0 limit: results

B.1 Expansion coefficients in x space

The coefficients rβ0
n of eq. (2.19) are obtained upon expanding the Borel function in

eq. (2.17):

1

2
B(x, u) =

∞∑

n=0

rβ0
n (x)un/n!; rβ0

n (x) = rβ0, sing.

n (x) + rβ0, reg.

n (x), (B.1)

To this end we need the expansion of the hypergeometric function, which is (see [66]):

2F1

(
[1, 1], [2 − u], x

)
=

1 − u

x

{
− ln(1 − x) + u

[
1

2
ln2(1 − x) + Li2(x)

]
(B.2)

+u2

[
−S1,2(x) − ln(1 − x)Li2(x) + Li3(x) − 1

6
ln3(1 − x)

]

+u3

[
− S2,2(x) − ln(1 − x)Li3(x) + ln(1 − x)S1,2(x)

+
1

2
ln2(1 − x)Li2(x) +

1

24
ln4(1 − x) + S1,3(x) + Li4(x)

]
+ · · ·

}
,

where Nielsen integrals are defined by

Sa,b(x) ≡ (−1)a+b−1

(a − 1)!b!

∫ 1

0

dξ

ξ
lna−1(ξ) lnb(1 − ξx). (B.3)

The resulting coefficients are as follows:

rsing.

1 (x) = − ln(1 − x)

1 − x
− 7

4 (1 − x)

rreg.

1 (x) = −1 + x

2
ln(1 − x) − x2

2
+

x

4
+

7

4

(B.4)

rβ0, sing.

2 (x) =
3

2

ln2(1 − x)

1 − x
+

13

12

ln(1 − x)

1 − x
+

(
π2

6
− 85

24

)
1

1 − x

rβ0 reg.

2 (x) =

(
x

2
+

1

2
+

1

1 − x

)
Li2(x) +

(
3x

4
+

3

4

)
ln2(1 − x)

+

(
−25x

12
− 3

2x
− 1

12
+

x2

2

)
ln(1 − x) − 19x2

12
+

49

24
+

55x

24
− π2

6 (1 − x)

(B.5)
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rβ0 sing.

3 (x) =−7

3

ln3(1−x)

1−x
+

1

4

ln2(1−x)

1−x
+

(
275

36
− π2

3

)
ln(1 − x)

1 − x
+

(
29π2

36
− 581

72

)
1

1−x

rβ0 reg.

3 (x) =

(
x+1+

2

1−x

)
Li3(x) +

[(
−2−2x− 4

1 − x

)
ln(1 − x) +

11x

3
+

4

3 (1 − x)

+
3

x
− 10

3

]
Li2(x) +

(
−x − 1 − 2

1 − x

)
S1, 2(x) +

(
−7

6
− 7x

6

)
ln3(1 − x)

+

(
23x

4
+

9

2x
− 13

4
− x2

2

)
ln2(1 − x)

+

(
19x2

6
− 7

x
+

π2

6
+

247

36
+

(
−407

36
+

π2

6

)
x +

2π2

3 (1 − x)

)
ln(1 − x)

+

(
π2

6
− 203

36

)
x2 − 2π2

9 (1 − x)
+

(
923

72
− π2

12

)
x − 139

72
− 7π2

12

(B.6)

rβ0 sing.

4 (x) =
15

4

ln4(1 − x)

1 − x
− 35

12

ln3(1 − x)

1 − x
+

(
π2

2
− 105

8

)
ln2(1 − x)

1 − x

+

(
6029

216
− 29π2

12

)
ln(1 − x)

1 − x
+

(
−π4

30
+

235

72
π2 − 9557

432
+ 3ζ3

)
1

1 − x

rβ0, reg.
4 (x) = 3

(
1 + x +

2

1 − x

)
Li4(x) +

[
− 6

(
1 + x +

2

1 − x

)
ln(1 − x) +

9

x
+ 11x − 10

+
4

1 − x

]
Li3(x) +

[
6

(
1 + x +

2

1 − x

)
ln2(1 − x)

+

(
20 − 8

1 − x
− 18

x
− 22x

)
ln(1 − x) −

(
π2 +

5

3

)
1

1 − x

− 197

6
− π2

2
+

(
121

6
− π2

2

)
x +

21

x

]
Li2(x)

+

[
6

(
1 + x +

2

1 − x

)
ln(1 − x) − 4

1 − x
+ 10 − 11x − 9

x

]
S1, 2(x)

+ 3

(
1 + x +

2

1 − x

)
(S1, 3(x) − S2, 2(x))

+

(
15

8
+

15x

8

)
ln4(1 − x) +

(
x2

2
+

119

12
− 157x

12
− 21

2x

)
ln3(1 − x)

+

(
−3π2

4
− 2π2

1 − x
+

63

2x
− 19x2

4
− 345

8
+

(
297

8
− 3π2

4

)
x

)
ln2(1 − x)+

[
12163

216
+

3π2 − 57

2x
+

4π2

3(1−x)
+

(
203

12
− π2

2

)
x2+

(
25π2

12
− 14063

216

)
x +

π2

12

]

ln(1 − x) +

(
−4955

216
+

19π2

12

)
x2 − 15715

432
+

(
−55π2

24
+

30227

432

)
x

− 1

90

−25π2 + 270 ζ3 − 3π4

1 − x
− 49π2

24
(B.7)
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B.2 Expansion coefficients in moment space

Defining the moments, as in (1.2), by

M̄PT, O7

N =

∫ 1

0
dx

1

ΓO7

dΓO7

dx
xN−1 (B.8)

and using eq. (2.15) with the final expression in eq. (2.17) we get:

M̄PT, O7

N = 1 +
CF

2β0

∫ ∞

0
duT (u)

(
Λ2

m2

)u

B̃(N,u) (B.9)

with

B̃(N,u) ≡
∫ 1

0
dx

(
xN−1 − 1

)
B(x, u) (B.10)

= e
5
3
u sin πu

πu

∫ 1

0
dx

(
xN−1 − 1

)
(1 − x)−u

{
1

1 − x

1

(1 − u)(2 − u)
+

[
−(1 − 4x + x2)

(
1

1 − x
+

1

1 − u

)
+

2(1 − x)2

(1 − u)2

]
2F1

(
[1, 1], [2 − u], x

)

+(1 − 4x + x2)
1

1 − x
+

(x + 1)(x2 − 3x + 1)

(1 − u)(1 − x)
− (2 − x)x

(2 − u)
− 2(1 − x)

(1 − u)2

}

The perturbative series to leading order in the flavor expansion takes the form:

M̄PT, O7

N = 1 + CF R1(N)
αs(m

2
b)

π
+ CF NfR

Nf

2 (N)

(
αs(m

2
b)

π

)2

+ · · · (B.11)

where at each order k we separate the coefficients into singular and regular parts, as in

eq. (B.1), namely

Rk(N) = Rsing.

k (N) + Rreg.

k (N). (B.12)

Here both parts of the coefficients are defined with vanishing first moments at each order:

Rsing.

k (N = 1) = 0 and Rreg.

k (N = 1) = 0.

At NLO the coefficients are:

Rsing.

1 (N) =
1

2
Ψ1(N) − π2

12
− 1

2
(Ψ(N) + γE)2

︸ ︷︷ ︸
LL

+
7

4
(Ψ(N) + γE)

︸ ︷︷ ︸
NLL

(B.13)

Rreg.

1 (N) =

(
− 1

2N (N + 1)
+

1

N

)
(Ψ(N) + γE) − 31

12
(B.14)

+
9

4N
+

1

2(N + 1)2
− 1

2(N + 2)
− 1

4 (N + 1)
+

1

2N2

At NNLO we have:

R
Nf ,sing.

2 (N) = −1

4

[
−1

3
(Ψ(N) + γE)3 +

(
Ψ1(N) − π2

6

)
(Ψ(N) + γE) − 1

3
(Ψ2(N) + 2ζ3)

]

︸ ︷︷ ︸
LL
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+
13

72

[
1

2
Ψ1(N) − π2

12
− 1

2
(Ψ(N) + γE)2

]

︸ ︷︷ ︸
NLL

+

(
π2

36
− 85

144

)
(Ψ(N) + γE)

︸ ︷︷ ︸
NNLL

(B.15)

and

R
Nf ,reg.
2 (N) =

1

12

∞∑

k=1

Γ(k)Γ(N)

Γ(N + k + 2)

(
3 + 3

1 + 2N

k
+ 2

N(N + 1)

k2

)
+

49

48
(B.16)

− 1

12N3
− 13

72N2
− 31

48

1

N
− 1

8

(
1

N
+

1

N + 1

)
(Ψ(N) + γE)2 +

(
− 19

72

1

N
− 1

6

1

N2

+
1

12

1

N + 2
− 7

72

1

N + 1
− 1

6

1

(N + 1)2
+

1

6
Ψ1(N) − 1

4

1

N − 1

)
(Ψ(N) + γE)

+
1

24

(
1

N + 1
+

1

N

)
Ψ1(N) +

(
1

16
− 5

144

1

N
− 5

144

1

N + 1

)
π2 − 1

12
Ψ2(N) − 1

3
ζ3

−13

72

1

(N + 1)2
+

1

12(N + 2)2
+

5

36

1

N + 2
− 1

12(N + 1)3
+

7

144(N + 1)
.

B.3 The small–x limit

Upon expanding eq. (2.3) in ref. [18], or eq. (2.17) above, in powers of x one finds:

1

ΓO7

dΓO7

dx

∣∣∣∣
large β0

=
CF

2β0

∫ ∞

0
duT (u)

(
Λ2

m2
b

)u {
B(x3)(u)x3 + B(x4)(u)x4 + O(x5)

}
(B.17)

=
CF αs

2π

{(
1 +

35

12

αsβ0

π
+· · ·

)
x3+

(
5

4
+

1099

240

αsβ0

π
+ · · ·

)
x4+O(x5)

}

with

B(x3)(u) = e
5
3
u sin πu

πu

4

3

[
1

1 − u
− 1

4 − u

]

B(x4)(u) = e
5
3
u sin πu

πu

[
5

2

1

1 − u
+

4

2 − u
− 6

3 − u
− 7

4 − u
+

5

2

1

5 − u

] (B.18)

Performing the Borel integration in eq. (B.17) (with the default values mb = 4.875 GeV

Λ = 0.332 GeV and Nf = 4) we obtain the following numerical coefficients of the small x

expansion:

1

ΓO7

dΓO7

dx

∣∣∣∣
large β0

= 0.0729x3 + 0.105x4 + O(x5). (B.19)
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